scispace - formally typeset
Search or ask a question
Topic

Trojan

About: Trojan is a research topic. Over the lifetime, 2028 publications have been published within this topic receiving 33209 citations.


Papers
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: An optical method to detect and localize Trojans inserted during the chip fabrication stage by engineering the fill cells in a standard cell library to be highly reflective at near-IR wavelengths so that they can be readily observed in an optical image taken through the backside of the chip.
Abstract: Hardware Trojans are a critical security threat to integrated circuits. We propose an optical method to detect and localize Trojans inserted during the chip fabrication stage. We engineer the fill cells in a standard cell library to be highly reflective at near-IR wavelengths so that they can be readily observed in an optical image taken through the backside of the chip. The pattern produced by their locations produces an easily measured watermark of the circuit layout. Replacement, modification or re-arrangement of these cells to add a Trojan can therefore be detected through rapid post-fabrication backside imaging. We evaluate our approach using various hardware blocks where the Trojan circuit area is less than 0.1% of the total area and it consumes less than 2% leakage power of the entire chip. In addition, we evaluate the tolerance of our methodology to background measurement noise and process variation.

45 citations

Book ChapterDOI
01 Jan 1994
TL;DR: The state of the art in the dynamics of the Trojan asteroids has progressed rapidly, since it has been possible to perform numerical integrations of many orbits for millions of years as discussed by the authors.
Abstract: The state of the art in the dynamics of the Trojan asteroids has progressed rapidly, since it has been possible to perform numerical integrations of many orbits for millions of years. Accurate proper elements are now computed by the synthetic method, that is from the output of a numerical integration; their stability, at least for time spans of a few million years, is good. This has allowed identification of Trojan families with an automated procedure closely mimicking the one used in the main belt. Although the families identified in a reliable way are only four, the occurrence of significant collisional evolution, not unlike that of the main belt, can be confirmed. The dynamical structure of the Trojan cloud, including the location of the main secular resonances, can be deduced from the proper elements and frequencies by a simple fit. However, many problems are not solved : the origin of a significant percentage of chaotic orbits showing no indications of instability; the location of the stability boundary of the Trojan cloud; the origin of the high inclination of most Trojans. We also do not know if there are “Trojans” for some other planets beside Jupiter : only one Mars Trojan has been found.

44 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the first data release of photometric analysis of TESS observations of small Solar System Bodies, focusing on the bright end of the observed main-belt asteroid and Jovian Trojan populations.
Abstract: Compared with previous space-borne surveys, the Transiting Exoplanet Survey Satellite (TESS) provides a unique and new approach to observe Solar System objects. While its primary mission avoids the vicinity of the ecliptic plane by approximately six degrees, the scale height of the Solar System debris disk is large enough to place various small body populations in the field-of-view. In this paper we present the first data release of photometric analysis of TESS observations of small Solar System Bodies, focusing on the bright end of the observed main-belt asteroid and Jovian Trojan populations. This data release, named TSSYS-DR1, contains 9912 light curves obtained and extracted in a homogeneous manner, and triples the number of bodies with unambiguous fundamental rotation characteristics, namely where accurate periods and amplitudes are both reported. Our catalogue clearly shows that the number of bodies with long rotation periods are definitely underestimated by all previous ground-based surveys, by at least an order of magnitude.

44 citations

Proceedings ArticleDOI
23 May 2021
TL;DR: Meta Neural Trojan Detection (MNTD) as mentioned in this paper proposes to train a meta-classifier that predicts whether a given target model is Trojaned, without knowledge of the attack strategy.
Abstract: In machine learning Trojan attacks, an adversary trains a corrupted model that obtains good performance on normal data but behaves maliciously on data samples with certain trigger patterns. Several approaches have been proposed to detect such attacks, but they make undesirable assumptions about the attack strategies or require direct access to the trained models, which restricts their utility in practice.This paper addresses these challenges by introducing a Meta Neural Trojan Detection (MNTD) pipeline that does not make assumptions on the attack strategies and only needs black-box access to models. The strategy is to train a meta-classifier that predicts whether a given target model is Trojaned. To train the meta-model without knowledge of the attack strategy, we introduce a technique called jumbo learning that samples a set of Trojaned models following a general distribution. We then dynamically optimize a query set together with the meta-classifier to distinguish between Trojaned and benign models.We evaluate MNTD with experiments on vision, speech, tabular data and natural language text datasets, and against different Trojan attacks such as data poisoning attack, model manipulation attack, and latent attack. We show that MNTD achieves 97% detection AUC score and significantly outperforms existing detection approaches. In addition, MNTD generalizes well and achieves high detection performance against unforeseen attacks. We also propose a robust MNTD pipeline which achieves around 90% detection AUC even when the attacker aims to evade the detection with full knowledge of the system.

44 citations

Journal ArticleDOI
10 Sep 2010-Science
TL;DR: The detection of 2008 LC18, which is a Neptune Trojan in the trailing (L5) Lagrangian region of gravitational equilibrium within Neptune’s orbit, indicates that the Trojans were likely captured by a migrating, eccentric Neptune in a dynamically excited planetesimal population.
Abstract: The orbits of small Solar System bodies record the history of our Solar System. Here, we report the detection of 2008 LC18, which is a Neptune Trojan in the trailing (L5) Lagrangian region of gravitational equilibrium within Neptune's orbit. We estimate that the leading and trailing Neptune Trojan regions have similarly sized populations and dynamics, with both regions dominated by high-inclination objects. Similar populations and dynamics at both Neptune Lagrangian regions indicate that the Trojans were likely captured by a migrating, eccentric Neptune in a dynamically excited planetesimal population.

44 citations


Network Information
Related Topics (5)
Cloud computing
156.4K papers, 1.9M citations
70% related
Cache
59.1K papers, 976.6K citations
70% related
Planet
27K papers, 980.6K citations
68% related
Compiler
26.3K papers, 578.5K citations
66% related
Key (cryptography)
60.1K papers, 659.3K citations
66% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023136
2022282
2021111
2020139
2019144
2018168