scispace - formally typeset
Search or ask a question
Topic

Trojan

About: Trojan is a research topic. Over the lifetime, 2028 publications have been published within this topic receiving 33209 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examined the fate of the Trojan clouds produced in previous work and found that the stability of Neptunian Trojans seems to be strongly correlated to their initial post-migration orbital elements.
Abstract: We present results examining the fate of the Trojan clouds produced in our previous work. We find that the stability of Neptunian Trojans seems to be strongly correlated to their initial post-migration orbital elements, with those objects that survive as Trojans for billions of years displaying negligible orbital evolution. The great majority of these survivors began the integrations with small eccentricities (e 20°. Dynamical integrations of the currently observed Trojans show that five out of the seven are dynamically stable on 4 Gyr timescales, while 2001 QR322, exhibits significant dynamical instability. The seventh Trojan object, 2008 LC18, has such large orbital uncertainties that only future studies will be able to determine its stability.

25 citations

Journal ArticleDOI
TL;DR: In this paper, a 2.2-3.8-μm spectral survey of 16 Jupiter Trojan asteroids was performed and the authors found clear spectral absorption features centered around 3.1 μm in the less-red population.
Abstract: To date, reflectance spectra of Jupiter Trojan asteroids have revealed no distinctive absorption features. For this reason, the surface composition of these objects remains a subject of speculation. Spectra have revealed, however, that the Jupiter Trojan asteroids consist of two distinct sub-populations that differ in the optical to near-infrared colors. The origins and compositional differences between the two sub-populations remain unclear. Here, we report the results from a 2.2–3.8 μm spectral survey of a collection of 16 Jupiter Trojan asteroids, divided equally between the two sub-populations. We find clear spectral absorption features centered around 3.1 μm in the less-red population. Additional absorption consistent with that expected from organic materials might also be present. No such features are see in the red population. A strong correlation exists between the strength of the 3.1 μm absorption feature and the optical to near-infrared color of the objects. While, traditionally, absorptions such as these in dark asteroids are modeled as being due to fine-grain water frost, we find it physically implausible that the special circumstances required to create such fine-grained frost would exist on a substantial fraction of the Jupiter Trojan asteroids. We suggest, instead, that the 3.1 μm absorption on Trojans and other dark asteroids could be due to N–H stretch features. Additionally, we point out that reflectivities derived from WISE observations show a strong absorption beyond 4 μm for both populations. The continuum of 3.1 μm features and the common absorption beyond 4 μm might suggest that both sub-populations of Jupiter Trojan asteroids formed in the same general region of the early solar system.

25 citations

Proceedings ArticleDOI
24 Oct 2016
TL;DR: In this article, the authors present a generic compiler that can transform any circuit into a trojan-resilient one, for which they can state quantitative security guarantees on the number of correct executions of the circuit thanks to a new tool denoted as ''testing amplification''.
Abstract: Security against hardware trojans is currently becoming an essential ingredient to ensure trust in information systems. A variety of solutions have been introduced to reach this goal, ranging from reactive (i.e., detection-based) to preventive (i.e., trying to make the insertion of a trojan more difficult for the adversary). In this paper, we show how testing (which is a typical detection tool) can be used to state concrete security guarantees for preventive approaches to trojan-resilience. For this purpose, we build on and formalize two important previous works which introduced ``input scrambling" and ``split manufacturing" as countermeasures to hardware trojans. Using these ingredients, we present a generic compiler that can transform any circuit into a trojan-resilient one, for which we can state quantitative security guarantees on the number of correct executions of the circuit thanks to a new tool denoted as ``testing amplification". Compared to previous works, our threat model covers an extended range of hardware trojans while we stick with the goal of minimizing the number of honest elements in our transformed circuits. Since transformed circuits essentially correspond to redundant multiparty computations of the target functionality, they also allow reasonably efficient implementations, which can be further optimized if specialized to certain cryptographic primitives and security goals.

24 citations


Network Information
Related Topics (5)
Cloud computing
156.4K papers, 1.9M citations
70% related
Cache
59.1K papers, 976.6K citations
70% related
Planet
27K papers, 980.6K citations
68% related
Compiler
26.3K papers, 578.5K citations
66% related
Key (cryptography)
60.1K papers, 659.3K citations
66% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023136
2022282
2021111
2020139
2019144
2018168