scispace - formally typeset
Search or ask a question
Topic

Tumor M2-PK

About: Tumor M2-PK is a research topic. Over the lifetime, 831 publications have been published within this topic receiving 32949 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This proof-of-concept analysis showed that circulating tumor DNA is an informative, inherently specific, and highly sensitive biomarker of metastatic breast cancer.
Abstract: Background The management of metastatic breast cancer requires monitoring of the tumor burden to determine the response to treatment, and improved biomarkers are needed. Biomarkers such as cancer antigen 15-3 (CA 15-3) and circulating tumor cells have been widely studied. However, circulating cell-free DNA carrying tumor-specific alterations (circulating tumor DNA) has not been extensively investigated or compared with other circulating biomarkers in breast cancer. Methods We compared the radiographic imaging of tumors with the assay of circulating tumor DNA, CA 15-3, and circulating tumor cells in 30 women with metastatic breast cancer who were receiving systemic therapy. We used targeted or whole-genome sequencing to identify somatic genomic alterations and designed personalized assays to quantify circulating tumor DNA in serially collected plasma specimens. CA 15-3 levels and numbers of circulating tumor cells were measured at identical time points. Results Circulating tumor DNA was successfully detected in 29 of the 30 women (97%) in whom somatic genomic alterations were identified; CA 15-3 and circulating tumor cells were detected in 21 of 27 women (78%) and 26 of 30 women (87%), respectively. Circulating tumor DNA levels showed a greater dynamic range, and greater correlation with changes in tumor burden, than did CA 15-3 or circulating tumor cells. Among the measures tested, circulating tumor DNA provided the earliest measure of treatment response in 10 of 19 women (53%). Conclusions This proof-of-concept analysis showed that circulating tumor DNA is an informative, inherently specific, and highly sensitive biomarker of metastatic breast cancer. (Funded by Cancer Research UK and others.)

1,857 citations

Journal ArticleDOI
TL;DR: Molecular analysis of circulating tumor cells from the blood of patients with lung cancer offers the possibility of monitoring changes in epithelial tumor genotypes during the course of treatment, and shows that a reduction in the number of captured cells was associated with a radiographic tumor response; an increase in theNumber of cells wasassociated with tumor progression, with the emergence of additional EGFR mutations in some cases.
Abstract: Background The use of tyrosine kinase inhibitors to target the epidermal growth factor receptor gene (EGFR) in patients with non–small-cell lung cancer is effective but limited by the emergence of drug-resistance mutations. Molecular characterization of circulating tumor cells may provide a strategy for noninvasive serial monitoring of tumor genotypes during treatment. Methods We captured highly purified circulating tumor cells from the blood of patients with non–small-cell lung cancer using a microfluidic device containing microposts coated with antibodies against epithelial cells. We performed EGFR mutational analysis on DNA recovered from circulating tumor cells using allele-specific polymerasechain-reaction amplification and compared the results with those from concurrently isolated free plasma DNA and from the original tumor-biopsy specimens. Results We isolated circulating tumor cells from 27 patients with metastatic non–small-cell lung cancer (median number, 74 cells per milliliter). We identified the expected EGFR activating mutation in circulating tumor cells from 11 of 12 patients (92%) and in matched free plasma DNA from 4 of 12 patients (33%) (P = 0.009). We detected the T790M mutation, which confers drug resistance, in circulating tumor cells collected from patients with EGFR mutations who had received tyrosine kinase inhibitors. When T790M was detectable in pretreatment tumor-biopsy specimens, the presence of the mutation correlated with reduced progression-free survival (7.7 months vs. 16.5 months, P<0.001). Serial analysis of circulating tumor cells showed that a reduction in the number of captured cells was associated with a radiographic tumor response; an increase in the number of cells was associated with tumor progression, with the emergence of additional EGFR mutations in some cases. Conclusions Molecular analysis of circulating tumor cells from the blood of patients with lung cancer offers the possibility of monitoring changes in epithelial tumor genotypes during the course of treatment.

1,599 citations

Journal ArticleDOI
TL;DR: All human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination, showing that CD47 is a commonly expressed molecule on all cancers, its function to blockphagocytosis is known, and blockade of its function leads to tumor cell phagcytosis and elimination.
Abstract: CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination CD47 is therefore a validated target for cancer therapies

1,206 citations

Journal ArticleDOI
24 Dec 2009-Cell
TL;DR: Tumor self-seeding could explain the relationships between anaplasia, tumor size, vascularity and prognosis, and local recurrence seeded by disseminated cells following ostensibly complete tumor excision.

1,172 citations

Journal Article
TL;DR: Results indicate that inhibition of Cdk4/6 alone is sufficient to cause tumor regression and a net reduction in tumor burden in some tumors.
Abstract: PD 0332991 is a highly specific inhibitor of cyclin-dependent kinase 4 (Cdk4) (IC50, 0.011 micromol/L) and Cdk6 (IC50, 0.016 micromol/L), having no activity against a panel of 36 additional protein kinases. It is a potent antiproliferative agent against retinoblastoma (Rb)-positive tumor cells in vitro, inducing an exclusive G1 arrest, with a concomitant reduction of phospho-Ser780/Ser795 on the Rb protein. Oral administration of PD 0332991 to mice bearing the Colo-205 human colon carcinoma produces marked tumor regression. Therapeutic doses of PD 0332991 cause elimination of phospho-Rb and the proliferative marker Ki-67 in tumor tissue and down-regulation of genes under the transcriptional control of E2F. The results indicate that inhibition of Cdk4/6 alone is sufficient to cause tumor regression and a net reduction in tumor burden in some tumors.

1,150 citations


Network Information
Related Topics (5)
Metastasis
103.6K papers, 3.4M citations
82% related
Cancer
339.6K papers, 10.9M citations
81% related
Carcinogenesis
60.3K papers, 3.1M citations
80% related
Breast cancer
214.3K papers, 6.4M citations
79% related
Colorectal cancer
71.1K papers, 2.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
20223
20191
20185
201735
201638