scispace - formally typeset
Search or ask a question

Showing papers on "Turbine published in 2009"


ReportDOI
01 Feb 2009
TL;DR: In this article, a three-bladed, upwind, variable speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology is described.
Abstract: This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

4,194 citations


BookDOI
18 Dec 2009
TL;DR: In this article, a simplified HAWT rotor performance calculation procedure was proposed to evaluate the effect of drag and blade number on the optimum performance of wind turbine rotor performance, considering the Betz limit and the ideal horizontal axis wind turbine with wake rotation.
Abstract: Preface Acknowledgements Introduction: Modern wind energy and its origins Modern wind turbines History of wind energy Wind characteristics and resources Introduction General characteristics of the wind resource Characteristics of the atmospheric boundary layer Wind data analysis and resource estimation Wind turbine energy production estimates using statistical techniques Overview of available resource assessment data Wind measurements and instrumentation Advanced topics Aerodynamics of wind turbines General overview One-dimensional momentum theory and the Betz limit Ideal horizontal axis wind turbing with wake rotation' Airfoils and general concepts of aerodynamics Momentum theory and blade element theory Blade shape for ideal rotor without wake rotation General rotor blade shape performance prediction Blade shape for optimum rotor with wake rotation Generalized rotor design procedure Simplified HAWT rotor performance calculation procedure Effect of drag and blade number on optimum performance Advanced aerodynamic topics Mechanics and dynamics Wind turbine rotor dynamics Detailed and specialized dynamic models Electrical aspects of wind turbines Basic concepts of electric power Power transformers Electrical machines Power converters Ancillary electrical equipment Wind turbine design Design procedure Wind turbine topologies Materials Machine elements Wind turbine loads Wind turbine subsystems and components Design evaluation Power curve prediction Wind turbine loads Wind turbine subsystems and components Design evaluation Power curve prediction Wind turbine control Overview of wind turbine control systems Typical grid-connected turbine operation Supervisory control overview and implementation Dynamic control theory and implementation Wind turbine siting, system design and integration Wind turbine siting Installation and operation issues Wind farms Wind turbines and wind farms in electric grids Offshore wind farms Operation in severe climates Hybrid electrical systems Wind energy system economics Overview of economic assessment of wind energy systems Capital costs of wind energy systems Operation and maintenance costs Value of wind energy Economic analysis methods Wind energy market considerations Wind energy systems: environmental aspects and impacts Avian interaction with wind trubines Visual impact of wind turbines Wind turbine noise Electromagnetic interference effects Land-use environmental impacts Other environmental considerations Nomenclature Problems Index

2,354 citations


Journal ArticleDOI
TL;DR: The possible methods of using the power electronic technology for improving wind turbine performance in power systems to meet the main grid connection requirements are discussed.
Abstract: This paper reviews the power electronic applications for wind energy systems. Various wind turbine systems with different generators and power electronic converters are described, and different technical features are compared. The electrical topologies of wind farms with different wind turbines are summarized and the possible uses of power electronic converters with wind farms are shown. Finally, the possible methods of using the power electronic technology for improving wind turbine performance in power systems to meet the main grid connection requirements are discussed.

1,344 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed different techniques, methodologies and algorithms developed to monitor the performance of wind turbine as well as for an early fault detection to keep away the wind turbines from catastrophic conditions due to sudden breakdowns.
Abstract: Renewable energy sources like wind energy are copiously available without any limitation. Wind turbines are used to tap the potential of wind energy, which is available in millions of MW. Reliability of wind turbine is critical to extract this maximum amount of energy from the wind. We reviewed different techniques, methodologies and algorithms developed to monitor the performance of wind turbine as well as for an early fault detection to keep away the wind turbines from catastrophic conditions due to sudden breakdowns. To keep the wind turbine in operation, implementation of condition monitoring system (CMS) and fault detection system (FDS) is paramount and for this purpose ample knowledge of these two types of systems is mandatory. So, an attempt has been made in this direction to review maximum approaches related to CMS and FDS in this piece of writing.

982 citations


Journal ArticleDOI
TL;DR: In this article, an optimal design model for designing hybrid solar-wind systems employing battery banks for calculating the system optimum configurations and ensuring that the annualized cost of the systems is minimized while satisfying the custom required loss of power supply probability (LPSP).

632 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the reliability of more than 6000 modern onshore wind turbines and their subassemblies in Denmark and Germany over 11 years and particularly changes in reliability of generators, gearboxes and converters.
Abstract: We have investigated the reliability of more than 6000 modern onshore wind turbines and their subassemblies in Denmark and Germany over 11 years and particularly changes in reliability of generators, gearboxes and converters in a subset of 650 turbines in Schleswig Holstein, Germany. We first start by considering the average failure rate of turbine populations and then the average failure rates of wind turbine subassemblies. This analysis yields some surprising results about which subassemblies are the most unreliable. Then we proceed to consider the failure intensity function variation with time for wind turbines in one of these populations, using the Power Law Process, of three subassemblies; generator, gearbox and converter. This analysis shows that wind turbine gearboxes seem to be achieving reliabilities similar to gearboxes outside the wind industry. However, wind turbine generators and converters are both achieving reliabilities considerably below that of other industries but the reliability of these subassemblies improves with time. The paper also considers different wind turbine concepts. Then we conclude by proposing that offshore wind turbines should be subject to more rigorous reliability improvement measures, such as more thorough subassembly testing, to eliminate early failures. The early focus should be on converters and generators.

612 citations


Journal ArticleDOI
TL;DR: In this article, the impact of increased penetration of doubly fed induction generators (DFIGs) on transient and small signal stability of a large power system is analyzed. And the proposed technique is tested on a large test system representing the Midwestern portion of the U.S. interconnection.
Abstract: The targeted and current development of wind energy in various countries around the world reveals that wind power is the fastest growing power generation technology. Among the several wind generation technologies, variable speed wind turbines utilizing doubly fed induction generators (DFIGs) are gaining momentum in the power industry. With the increase in penetration of these wind turbines, the power system dominated by synchronous machines will experience a change in dynamics and operational characteristics. Given this assertion, the present paper develops an approach to analyze the impact of increased penetration of DFIG-based wind turbines on transient and small signal stability of a large power system. The primary basis of the method is to convert the DFIG machines into equivalent conventional round rotor synchronous machines and then evaluate the sensitivity of the eigenvalues with respect to inertia. In this regard, modes that are both detrimentally and beneficially affected by the change in inertia are identified. These modes are then excited by appropriate disturbances and the impact of reduced inertia on transient stability performance is also examined. The proposed technique is tested on a large test system representing the Midwestern portion of the U.S. interconnection. The results obtained indicate that the proposed method effectively identifies both detrimental and beneficial impacts of increased DFIG penetration both for transient stability and small signal stability related performance.

610 citations


Proceedings ArticleDOI
24 Jun 2009
TL;DR: The state-of-the-art advancement in wind turbine condition monitoring and fault diagnosis for the recent several years is reviewed in this paper, where the impact of unsteady aerodynamic load on the robustness of diagnostic signatures has been notified.
Abstract: The state-of-the-art advancement in wind turbine condition monitoring and fault diagnosis for the recent several years is reviewed. Since the existing surveys on wind turbine condition monitoring cover the literatures up to 2006, this review aims to report the most recent advances in the past three years, with primary focus on gearbox and bearing, rotor and blades, generator and power electronics, as well as system-wise turbine diagnosis. There are several major trends observed through the survey. Due to the variable-speed nature of wind turbine operation and the unsteady load involved, time-frequency analysis tools such as wavelets have been accepted as a key signal processing tool for such application. Acoustic emission has lately gained much more attention in order to detect incipient failures because of the low-speed operation for wind turbines. There has been an increasing trend of developing model based reasoning algorithms for fault detection and isolation as cost-effective approach for wind turbines as relatively complicated system. The impact of unsteady aerodynamic load on the robustness of diagnostic signatures has been notified. Decoupling the wind load from condition monitoring decision making will reduce the associated down-time cost.

561 citations


Journal ArticleDOI
TL;DR: In this paper, a survey of this topic suggests that a desirable solution may be a single surface engineered coating that reduces the incidence of ice adhesion, insect fouling, and protects the blade surface from erosive deterioration.
Abstract: Wind turbine performance can be significantly reduced when the surface integrity of the turbine blades is compromised. Many frontier high-energy regions that are sought for wind farm development including Nordic, warm-humid, and desert-like environments often provide conditions detrimental to the surface of the turbine blade. In Nordic climates ice can form on the blades and the turbine structure itself through a variety of mechanisms. Initial ice adhesion may slightly modify the original aerodynamic profile of the blade; continued ice accretion can drastically affect the structural loading of the entire rotor leading to potentially dangerous situations. In warmer climates, a humid wind is desirable for its increased density; however, it can come at a price when the region supports large populations of insects. Insect collisions with the blades can foul blade surfaces leading to a marked increase in skin drag, reducing power production by as much as 50%. Finally, in more arid regions where there is no threat from ice or insects, high winds can carry soil particles eroded from the ground (abrasive particles). Particulate-laden winds effectively sand-blast the blade surfaces, and disrupt the original skin profile of the blade, again reducing its aerodynamic efficiency. While these problems are challenging, some mitigative measures presently exist and are discussed in the paper. Though, many of the current solutions to ice or insect fouling actually siphon power from the turbine itself to operate, or require that the turbine be stopped, in either case, profitability is diminished. Our survey of this topic in the course of our research suggests that a desirable solution may be a single surface engineered coating that reduces the incidence of ice adhesion, insect fouling, and protects the blade surface from erosive deterioration. Research directions that may lead to such a development are discussed herein.

488 citations


Journal ArticleDOI
TL;DR: In this article, a model wind turbine placed in a boundary layer developed over rough and smooth surfaces was used to study turbulence in the wake of a wind turbine, and the cross-sectional distribution of mean velocity, turbulence intensity and kinematic shear stress at different locations downwind of the turbine for both surface roughness cases.
Abstract: Wind-tunnel experiments were performed to study turbulence in the wake of a model wind turbine placed in a boundary layer developed over rough and smooth surfaces. Hot-wire anemometry was used to characterize the cross-sectional distribution of mean velocity, turbulence intensity and kinematic shear stress at different locations downwind of the turbine for both surface roughness cases. Special emphasis was placed on the spatial distribution of the velocity deficit and the turbulence intensity, which are important factors affecting turbine power generation and fatigue loads in wind energy parks. Non-axisymmetric behaviour of the wake is observed over both roughness types in response to the non-uniform incoming boundary-layer flow and the effect of the surface. Nonetheless, the velocity deficit with respect to the incoming velocity profile is nearly axisymmetric, except near the ground in the far wake where the wake interacts with the surface. It is found that the wind turbine induces a large enhancement of turbulence levels (positive added turbulence intensity) in the upper part of the wake. This is due to the effect of relatively large velocity fluctuations associated with helicoidal tip vortices near the wake edge, where the mean shear is strong. In the lower part of the wake, the mean shear and turbulence intensity are reduced with respect to the incoming flow. The non-axisymmetry of the turbulence intensity distribution of the wake is found to be stronger over the rough surface, where the incoming flow is less uniform at the turbine level. In the far wake the added turbulent intensity, its positive and negative contributions and its local maximum decay as a power law of downwind distance (with an exponent ranging from −0.3 to −0.5 for the rough surface, and with a wider variation for the smooth surface). Nevertheless, the effect of the turbine on the velocity defect and added turbulence intensity is not negligible even in the very far wake, at a distance of fifteen times the rotor diameter.

446 citations


Proceedings ArticleDOI
10 Jun 2009
TL;DR: The basic structure of wind turbines is reviewed and wind turbine control systems and control loops are described, of great interest are the generator torque and blade pitch control systems, where significant performance improvements are achievable with more advanced systems and Control research.
Abstract: Wind energy is currently the fastest-growing energy source in the world, with a concurrent growth in demand for the expertise of engineers and researchers in the wind energy field. There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper, we first review the basic structure of wind turbines and then describe wind turbine control systems and control loops. Of great interest are the generator torque and blade pitch control systems, where significant performance improvements are achievable with more advanced systems and control research. We describe recent developments in advanced controllers for wind turbines and wind farms, and we also outline many open problems in the areas of modeling and control of wind turbines.

Journal ArticleDOI
TL;DR: In this paper, the authors used a large horizontal microphone array, positioned at a distance of about one rotor diameter from the turbine, to locate and quantify the noise sources in the rotor plane and on individual blades.
Abstract: Acoustic field measurements were carried out on a 94-m-diam three-bladed wind turbine with one standard blade, one blade with trailing-edge serrations, and one blade with an optimized airfoil shape. A large horizontal microphone array, positioned at a distance of about one rotor diameter from the turbine, was used to locate and quantify the noise sources in the rotor plane and on the individual blades. The acoustic source maps show that for an observer at the array position, the dominant source for the baseline blade is trailing-edge noise from the blade outboard region. Because of convective amplification and directivity, practically all of this noise is produced during the downward movement of the blade, which causes the typical swishing noise during the passage of the blades. Both modified blades show a significant trailing-edge noise reduction at low frequencies, which is more prominent for the serrated blade. However, the modified blades also show tip noise at high frequencies, which is mainly radiated during the upward part of the revolution and is most important at low wind speeds due to high tip loading. Nevertheless, average overall noise reductions of 0.5 and 3.2 dB are obtained for the optimized blade and the serrated blade, respectively.

Book
01 Jan 2009
TL;DR: In this article, a state-of-the-art guide to wind turbine engineering can be found to examine real-life choices made by inventors, designers, and builders of turbines; absorb their practical lessons; and synthesize the experiences of a wide range of wind energy professionals.
Abstract: This state-of-the-art guide to wind turbine engineering lets you: examine the real-life choices made by inventors, designers, and builders of turbines; absorb their practical lessons; and synthesize the experiences of a wide range of wind-energy professionals. You get technical expertise on a wide range of material, including advances in aerodynamics, structural dynamics and fatigue, wind characteristics, acoustic and electromagnetic emissions, commercial wind power applications, and utility power systems. Packed with applications-oriented advice -- and including numerous graphics and numerical examples -- this authoritative volume provides uniform terminology, nomenclature, and graphic style, as well as widespread cross-referencing. Covering design concepts and philosophies, research and demonstration projects, and the integration of wind power plants into electrical utility systems, Wind Turbine Technology is both a practical reference and a classroom text.

Journal ArticleDOI
TL;DR: In this article, the authors used a large eddy simulation model with particular wind boundary conditions to simulate and characterize the turbulence generated by the presence of a wind turbine and its evolution downstream the machine.
Abstract: When a wind turbine works in yaw, the wake intensity and the power production of the turbine become slightly smaller and a deflection of the wake is induced. Therefore, a good understanding of this effect would allow an active control of the yaw angle of upstream turbines to steer the wake away from downstream machines, reducing its effect on them. In wind farms where interaction between turbines is significant, it is of interest to maximize the power output from the wind farm as a whole and to reduce fatigue loads on downstream turbines due to the increase of turbulence intensity in wakes. A large eddy simulation model with particular wind boundary conditions has been used recently to simulate and characterize the turbulence generated by the presence of a wind turbine and its evolution downstream the machine. The simplified turbine is placed within an environment in which relevant flow properties like wind speed profile, turbulence intensity and the anisotropy of turbulence are found to be similar to the ones of the neutral atmosphere. In this work, the model is used to characterize the wake deflection for a range of yaw angles and thrust coefficients of the turbine. The results are compared with experimental data obtained by other authors with a particle image velocimetry technique from wind tunnel experiments. Also, a comparison with simple analytical correlations is carried out. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The proposed sliding-mode control approach has been validated on a 1.5-MW three-blade wind turbine using the national renewable energy laboratory wind turbine simulator FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code and results show that the proposed control strategy is effective in terms of power regulation.
Abstract: This paper deals with the power generation control in variable-speed wind turbines. These systems have two operation regions which depend on wind turbine tip speed ratio. A high-order sliding-mode control strategy is then proposed to ensure stability in both operation regions and to impose the ideal feedback control solution in spite of model uncertainties. This control strategy presents attractive features such as robustness to parametric uncertainties of the turbine. The proposed sliding-mode control approach has been validated on a 1.5-MW three-blade wind turbine using the national renewable energy laboratory wind turbine simulator FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code. Validation results show that the proposed control strategy is effective in terms of power regulation. Moreover, the sliding-mode approach is arranged so as to produce no chattering in the generated torque that could lead to increased mechanical stress because of strong torque variations.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the high inertias (H cong 4 seconds) of wind turbine-generators can be integrated to provide frequency support during generation outage.
Abstract: As wind power penetration increases and fossil plants are retired, it is feared that there will be insufficient kinetic energy (KE) from the plants to support the system frequency. This paper shows the fear is groundless because the high inertias (H cong 4 seconds) of wind turbine-generators (WTGs) can be integrated to provide frequency support during generation outage.

Journal ArticleDOI
Jesús López1, E. Gubia1, E. Olea, J. Ruiz, Luis Marroyo1 
TL;DR: This paper proposes a novel control strategy that notably reduces the crowbar activation time and, as a result, the control of the turbine might shortly be resumed and the turbine can furthermore supply a reactive power fulfilling the newest grid regulations.
Abstract: This paper deals with the grid fault ride-through capability of doubly fed induction generators. These machines are very sensitive to grid disturbances. To prevent the damages that voltage dips can cause on the converter, most machines are equipped nowadays with a crowbar that short circuits the rotor. However, during the crowbar activation, the rotor converter must be disconnected, hence the power generated with the turbine is no longer controlled. In doing so, the crowbar impedes the wind turbine from carrying out the voltage stabilization required by most new grid codes. This paper proposes a novel control strategy that notably reduces the crowbar activation time. As a result, the control of the turbine might shortly be resumed and the turbine can furthermore supply a reactive power fulfilling the newest grid regulations. Experimental results of a complete system are included, demonstrating the viability of the proposed control.

Journal ArticleDOI
TL;DR: In this article, the authors present a simulation tool for modeling the coupled dynamic response of offshore floating wind turbines and the verification of the simulation tool through model-to-model comparisons.
Abstract: The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modelling the coupled dynamic response of offshore floating wind turbines and the verification of the simulation tool through model-to-model comparisons. The fully coupled time-domain aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address limitations of previous studies and has features required to perform loads analyses for a variety of rotor-nacelle assembly, tower, support platform and mooring system configurations. The developed hydrodynamics module accounts for linear hydrostatic restoring; non-linear viscous drag; the added-mass and damping contributions from linear wave radiation, including free-surface memory effects; and the incident-wave excitation from linear diffraction in regular or irregular seas. The developed mooring line module is quasi-static and accounts for the elastic stretching of an array of homogenous taut or slack catenary lines with seabed interaction. The hydrodynamics module, the moorings module, and the overall simulation tool were tested by comparing to results of other models, including frequency-domain models. The favourable results of all the verification exercises provided confidence to perform more thorough analyses. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
E. Martínez, F. Sanz1, S. Pellegrini, Emilio Jiménez1, J. Blanco1 
TL;DR: In this article, the authors apply the ISO 14040 standard to the whole life cycle of a wind turbine, from cradle to grave, with regard to the manufacture of its key components, transport to the wind farm, subsequent installation, start-up, maintenance and final dismantling and stripping down into waste materials and their treatment.

Journal ArticleDOI
TL;DR: In this paper, the structural responses of offshore wind turbines are simulated with an attached damper (Tuned Liquid Column Damper) for controlling the vibrations induced within the structure, and a fatigue analysis is carried out and the implementation of TLCDs is seen to enhance the fatigue life of the structure.

Journal ArticleDOI
TL;DR: In this paper, the authors presented the results of a life cycle energy and greenhouse emissions analysis of two wind turbines and considered the effect of wind turbine size on energy yield, and found that the embodied energy component was more significant than in previous studies, emphasised here due to the innovative use of a hybrid embodied energy analysis approach.
Abstract: Wind turbines, used to generate renewable energy, are typically considered to take only a number of months to produce as much energy as is required in their manufacture and operation. With a life expectancy of upwards of 20 years, the energy produced by wind turbines over their life can be many times greater than that embodied in their production. Many previous life cycle energy studies of wind turbines are based on methods of assessment now known to be incomplete. These studies may underestimate the energy embodied in wind turbines by more than 50%, potentially overestimating the energy yield of those systems and possibly affecting the comparison of energy generation options. With the increasing trend towards larger scale wind turbines, comes a respective increase in the energy required for their manufacture. It is important to consider whether or not these increases in wind turbine size, and thus embodied energy, can be adequately justified by equivalent increases in the energy yield of such systems. This paper presents the results of a life cycle energy and greenhouse emissions analysis of two wind turbines and considers the effect of wind turbine size on energy yield. The issue of incompleteness associated with many past life cycle energy studies is also addressed. Energy yield ratios of 21 and 23 were found for a small and large scale wind turbine, respectively. The embodied energy component was found to be more significant than in previous studies, emphasised here due to the innovative use of a hybrid embodied energy analysis approach. The life cycle energy requirements were shown to be offset by the energy produced within the first 12 months of operation. The size of wind turbines appears to not be an important factor in optimising their life cycle energy performance.

01 Jan 2009
TL;DR: In this article, a 3D Navier-Stokes computational study of the wake characteristics of wind turbines operating in various flow conditions including interacting wakes between a row of turbines is presented.
Abstract: This thesis contains a comprehensive 3D Navier-Stokes computational study of the characteristics of wakes of wind turbines operating in various flow conditions including interacting wakes between a row of turbines. The computations were carried out using the actuator line technique combined with the 3D Navier Stokes solver EllipSys3D and a LES turbulence model. Simple models, based on applying body forces in the computational domain, are developed for imposing sheared and turbulent inflow and their validity is discussed. A few computations on stand alone turbines are compared to measurements and good to fair agreement are shown in terms of respectively power coefficient and mean wake properties. The turbulence properties in the wake are generally characterized by its spectral characteristics and include estimation of spectral coherence, length scales and Reynolds stresses. Simulations of the wake from an isolated turbine operating in uniform inflow at tip-speed ratios ranging from λ = 3.21 to λ = 11.78 is presented and provides detailed information about the wake development including vortex properties and turbulence characteristics. Calculations on the wake of turbines subject to sheared inflow shows that besides an expected vertical skewed wake the wake also becomes increasingly asymmetric in the horizontal direction as it is convected downstream. The latter phenomena, which is also often observed in measurements, is argued to be caused by the rotation of the wake. A detailed study is presented to investigate the influence of including turbulence in the inflow. The study shows that the ambient turbulence causes the vortex system in the wake to become unstable much closer to the rotor and as a consequence the wake becomes fully turbulent earlier than if inflow turbulence is neglected. Furthermore, it is shown that the main effect governing the large scale meandering of wakes is the large scale structures of the ambient turbulence field. Finally studies are conducted on rows of respectively two and three turbines. The investigation includes evaluation of the loading on the rotors and it is shown that the turbines are subject to rather severe yaw moments, even in situations where the mean wind is oriented along the row. This observation is indicative of large scale dynamics of the wakes.

Journal Article
TL;DR: In this paper, the vertical transport of momentum and kinetic energy across a boundary layer flow with wind turbines is investigated in a wind-tunnel experiment with a 3×3 array of model wind turbines.
Abstract: When wind turbines are deployed in large arrays, their ability to extract kinetic energy from the flow decreases due to complex interactions among them, the terrain topography and the atmospheric boundary layer. In order to improve the understanding of the vertical transport of momentum and kinetic energy across a boundary layer flow with wind turbines, a wind-tunnel experiment is performed. The boundary layer flow includes a 3×3 array of model wind turbines. Particle-image-velocity measurements in a volume surrounding a target wind turbine are used to compute mean velocity and turbulence properties averaged on horizontal planes. Results are compared with simple momentum theory and with expressions for effective roughness length scales used to parametrize wind-turbine arrays in large-scale computer models. The impact of vertical transport of kinetic energy due to turbulence and mean flow correlations is quantified. It is found that the fluxes of kinetic energy associated with the Reynolds shear stresses a...

Journal ArticleDOI
TL;DR: A benchmark model for simulation of fault detection and accommodation schemes of the wind turbine on a system level containing sensors, actuators and systems faults in the pitch system, drive train, generator and converter system is presented.

Proceedings ArticleDOI
10 Jun 2009
TL;DR: An overview of the common basic linear control approaches are provided and then more advanced control architectures are described and why they may provide significant advantages.
Abstract: We review the objectives and techniques used in the control of horizontal axis wind turbines at the individual turbine level, where controls are applied to the turbine blade pitch and generator. The turbine system is modeled as a flexible structure operating in the presence of turbulent wind disturbances. Some overview of the various stages of turbine operation and control strategies used to maximize energy capture in below rated wind speeds is given, but emphasis is on control to alleviate loads when the turbine is operating at maximum power. After reviewing basic turbine control objectives, we provide an overview of the common basic linear control approaches and then describe more advanced control architectures and why they may provide significant advantages.

Proceedings ArticleDOI
05 Jul 2009
TL;DR: In this paper, a typical configuration of a wind turbine generator system equipped with a variable speed generator is analyzed, and the concept of Maximum Power Point Tracking (MPPT) has been presented in terms of the adjustment of the generator rotor speed according to instantaneous wind speed.
Abstract: The aim of this work is to analyze a typical configuration of a Wind Turbine Generator System (WTGS) equipped with a Variable Speed Generator. Nowadays, doubly-fed induction generators are being widely used on WTGS, although synchronous generators are being extensively utilized too. There are different types of synchronous generators, but the multi-pole Permanent Magnet Synchronous Generator (PMSG) is chosen in order to obtain its model. It offers better performance due to higher efficiency and less maintenance since it does not have rotor current and can be used without a gearbox, which also implies a reduction of the weight of the nacelle and a reduction of costs. Apart from the generator, the analyzed WTGS consists of another three parts: wind speed, wind turbine and drive train. These elements have been modeled and the equations that explain their behavior have been introduced. What is more, the whole WTGS has been implemented in MATLAB/Simulink interface. Moreover, the concept of the Maximum Power Point Tracking (MPPT) has been presented in terms of the adjustment of the generator rotor speed according to instantaneous wind speed.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the cost-effective ranges of gearbox ratios and power ratings of multibrid permanent magnet (PM) wind generator systems by using a design optimization method.
Abstract: This paper investigates the cost-effective ranges of gearbox ratios and power ratings of multibrid permanent-magnet (PM) wind generator systems by using a design optimization method. First, the analytical model of a multibrid wind turbine concept consisting of a single-stage gearbox and a three-phase radial-flux PM synchronous generator with a back-to-back power converter is presented. The design optimization is adopted with a genetic algorithm for minimizing generator system cost. To demonstrate the effectiveness of the developed electromagnetic design model, the optimization results of a 500-kW direct-drive PM generator and a 1.5-MW multibrid PM generator with various gear ratios are, respectively, compared with those from other methods. Then, the optimal design approach is further employed for a range from 750 kW up to 10 MW. The optimization results of PM generator systems including direct-drive and multibrid wind turbine configurations are obtained, and the suitable ranges of gear ratios for different power ratings are investigated. Finally, the detailed comparisons of the most cost-effective multibrid PM generator system and the optimized direct-drive PM generator system are also presented and discussed. The comparative results have shown that the multibrid wind turbine concept appears more cost-effective than the direct-drive concept.

Journal ArticleDOI
TL;DR: In this article, the effects of free-surface proximity on the flow field around tidal stream turbines are modelled using actuator disc theory, and the theoretical results are compared to open channel flow experimental results.
Abstract: The effects of free-surface proximity on the flow field around tidal stream turbines are modelled using actuator disc theory. Theoretical results are presented for a blocked configuration of tidal stream turbines such as a linear array that account for the proximity of the free surface and the seabed. The theoretical results are compared to open channel flow experimental results in which the flow field has been simulated using a porous disc and strip. These results are complemented by more detailed measurements of the performance of a model horizontal-axis turbine carried out in a water flume and a wind tunnel. The two sets of experiments represent highly blocked and effectively unblocked cases, respectively. The theoretical model of the effects of free-surface proximity provides a blockage correction for axial induction that can be incorporated in blade element momentum codes. The performance predictions obtained with such a code are in good agreement with the experimental results for C P and C T at low tip-speed ratios. The agreement weakens with increasing tip-speed ratio, as the wake of turbine enters a reversed flow state. A correction following the philosophy of Maskell is applied to C T in this region, which provides a better agreement.

Journal ArticleDOI
TL;DR: An artificial neural network-based pitch angle controller for wind turbines is proposed and it is shown that the power output was successfully regulated during high wind speed, and as a result overloading or outage of the wind turbine was prevented.
Abstract: In wind energy conversion systems, one of the operational problems is the changeability and discontinuity of wind. In most cases, wind speed can fluctuate rapidly. Hence, quality of produced energy becomes an important problem in wind energy conversion plants. Several control techniques have been applied to improve the quality of power generated from wind turbines. Pitch control is the most efficient and popular power control method, especially for variable-speed wind turbines. It is a useful method for power regulation above the rated wind speed. This paper proposes an artificial neural network-based pitch angle controller for wind turbines. In the simulations, a variable-speed wind turbine is modeled, and its operation is observed by using two types of artificial neural network controllers. These are multi-layer perceptrons with back propagation learning algorithm and radial basis function network. It is shown that the power output was successfully regulated during high wind speed, and as a result overloading or outage of the wind turbine was prevented.

05 Jan 2009
TL;DR: In this paper, a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically was presented, and the performance of the fan inlet was evaluated.
Abstract: Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new possibilities. The Boeing N2 hybrid-wing-body (HWB) is used as a baseline aircraft for this study. The two pylon mounted conventional turbofans are replaced by two wing-tip mounted turboshaft engines, each driving a superconducting generator. Both generators feed a common electrical bus which distributes power to an array of superconducting motor-driven fans in a continuous nacelle centered along the trailing edge of the upper surface of the wing-body. A key finding was that traditional inlet performance methodology has to be modified when most of the air entering the inlet is boundary layer air. A very thorough and detailed propulsion/airframe integration (PAI) analysis is required at the very beginning of the design process since embedded engine inlet performance must be based on conditions at the inlet lip rather than freestream conditions. Examination of a range of fan pressure ratios yielded a minimum Thrust-specific-fuel-consumption (TSFC) at the aerodynamic design point of the vehicle (31,000 ft /Mach 0.8) between 1.3 and 1.35 FPR. We deduced that this was due to the higher pressure losses prior to the fan inlet as well as higher losses in the 2-D inlets and nozzles. This FPR is likely to be higher than the FPR that yields a minimum TSFC in a pylon mounted engine. 1