scispace - formally typeset
Search or ask a question
Topic

Turbo code

About: Turbo code is a research topic. Over the lifetime, 15030 publications have been published within this topic receiving 343763 citations.


Papers
More filters
Proceedings Article
01 Jan 1993

7,742 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas and derive performance criteria for designing such codes under the assumption that the fading is slow and frequency nonselective.
Abstract: We consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas. Data is encoded by a channel code and the encoded data is split into n streams that are simultaneously transmitted using n transmit antennas. The received signal at each receive antenna is a linear superposition of the n transmitted signals perturbed by noise. We derive performance criteria for designing such codes under the assumption that the fading is slow and frequency nonselective. Performance is shown to be determined by matrices constructed from pairs of distinct code sequences. The minimum rank among these matrices quantifies the diversity gain, while the minimum determinant of these matrices quantifies the coding gain. The results are then extended to fast fading channels. The design criteria are used to design trellis codes for high data rate wireless communication. The encoding/decoding complexity of these codes is comparable to trellis codes employed in practice over Gaussian channels. The codes constructed here provide the best tradeoff between data rate, diversity advantage, and trellis complexity. Simulation results are provided for 4 and 8 PSK signal sets with data rates of 2 and 3 bits/symbol, demonstrating excellent performance that is within 2-3 dB of the outage capacity for these channels using only 64 state encoders.

7,105 citations

Journal ArticleDOI
TL;DR: The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above R_{0} and whose performance bears certain similarities to that of sequential decoding algorithms.
Abstract: The probability of error in decoding an optimal convolutional code transmitted over a memoryless channel is bounded from above and below as a function of the constraint length of the code. For all but pathological channels the bounds are asymptotically (exponentially) tight for rates above R_{0} , the computational cutoff rate of sequential decoding. As a function of constraint length the performance of optimal convolutional codes is shown to be superior to that of block codes of the same length, the relative improvement increasing with rate. The upper bound is obtained for a specific probabilistic nonsequential decoding algorithm which is shown to be asymptotically optimum for rates above R_{0} and whose performance bears certain similarities to that of sequential decoding algorithms.

6,804 citations

Journal ArticleDOI
TL;DR: A generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph, that computes-either exactly or approximately-various marginal functions derived from the global function.
Abstract: Algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset of the variables. Such a factorization can be visualized with a bipartite graph that we call a factor graph, In this tutorial paper, we present a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes-either exactly or approximately-various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.

6,637 citations


Network Information
Related Topics (5)
Base station
85.8K papers, 1M citations
92% related
Fading
55.4K papers, 1M citations
91% related
Wireless network
122.5K papers, 2.1M citations
90% related
Network packet
159.7K papers, 2.2M citations
90% related
Wireless
133.4K papers, 1.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202350
2022136
202166
202089
2019125
2018181