scispace - formally typeset
Search or ask a question

Showing papers on "Turbulence published in 1999"


Journal ArticleDOI
TL;DR: In this paper, a subgrid scale model is proposed for large eddy simulations in complex geometries, which accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations.
Abstract: A new subgrid scale model is proposed for Large Eddy Simulations in complex geometries. This model which is based on the square of the velocity gradient tensor accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations. Moreover it recovers the proper y 3 near-wall scaling for the eddy viscosity without requiring dynamic procedure. It is also shown from a periodic turbulent pipe flow computation that the model can handle transition.

2,855 citations


Journal ArticleDOI
TL;DR: In this paper, numerical simulations of fully developed turbulent channel flow at three Reynolds numbers up to Reτ=590 were reported, and it was noted that the higher Reynolds number simulations exhibit fewer low Reynolds number effects than previous simulations at Reτ = 180.
Abstract: Numerical simulations of fully developed turbulent channel flow at three Reynolds numbers up to Reτ=590 are reported. It is noted that the higher Reynolds number simulations exhibit fewer low Reynolds number effects than previous simulations at Reτ=180. A comprehensive set of statistics gathered from the simulations is available on the web at http://www.tam.uiuc.edu/Faculty/Moser/channel.

2,618 citations


Journal ArticleDOI
TL;DR: In this article, a model is developed to describe the drag, turbulence and diffusion for flow through emergent vegetation, which for the first time captures the relevant underlying physics, and covers the natural range of vegetation density and stem Reynolds' numbers.
Abstract: Aquatic plants convert mean kinetic energy into turbulent kinetic energy at the scale of the plant stems and branches. This energy transfer, linked to wake generation, affects vegetative drag and turbulence intensity. Drawing on this physical link, a model is developed to describe the drag, turbulence and diffusion for flow through emergent vegetation which for the first time captures the relevant underlying physics, and covers the natural range of vegetation density and stem Reynolds' numbers. The model is supported by laboratory and field observations. In addition, this work extends the cylinder-based model for vegetative resistance by including the dependence of the drag coefficient, CD, on the stem population density, and introduces the importance of mechanical diffusion in vegetated flows.

1,199 citations


Journal ArticleDOI
TL;DR: In this article, the authors deal with the theory of hydrodynamic instability and the development of turbulence, the application of dimensional analysis, and the theories of similarity to turbulent flow in pipes, ducts, and boundary layers, as well as free turbulence.
Abstract: This book, originally published in Moscow in 1965, is of interest to a wide scientific and technical audience, including geophysicists, meteorologists, aerodynamicists, chemical, mechanical, and civil engineers--in short, all interested in the fundamental problems of flow, mass, and heat transfer. The authors deal with the theory of hydrodynamic instability and the development of turbulence, the application of dimensional analysis, and the theory of similarity to turbulent flow in pipes, ducts, and boundary layers, as well as free turbulence. They discuss semiempirical theories of turbulence, develop the similarity theory for turbulence in nonhomogeneous media, and present Lagrangian characteristics of turbulence and the theory of turbulent diffusion. Every effort has been made to present a wealth of experimental material; a large number of examples are drawn from physics of the atmosphere, permitting a generalization of results beyond that which can be obtained in the laboratory. Considerable attention has been given to Kolmogorov's theory of the local structure of developed turbulence and to the theory of turbulence in stratified media."Contents: I. Laminar and Turbulent Motion: " Equations of dynamics of a fluid and their most important consequences; Hydrodynamic instability and development of turbulence. "II. Mathematical Methods for Describing Turbulence, Mean Values and Correlation Functions: " Methods for taking mean; The fields of hydrodynamic characteristics regarded as stochastic fields; The moments of hydrodynamic fields. "III. The Reynolds Equation and Semiempirical Theories of Turbulence: " Turbulent flow in pipes and in the boundary layer; Turbulent energy balance and results derived from it. "IV. Turbulence in a Medium Stratified with Respect to Temperature: " Generalization of the theory of the logarithmic boundary layer to the case of a medium stratified with respect to temperature; Comparison of the theory with experimental data on the atmospheric layer near the ground. "V. Motion of Particles (or Elements) in a Turbulent Stream: " Lagrangian description of Turbulence; Turbulent diffusion.

1,164 citations


Journal ArticleDOI
TL;DR: In this paper, a wealth of information obtained from quasistationary laboratory experiments for plasma confinement is reviewed for drift waves driven unstable by density gradients, temperature gradients and trapped particle effects.
Abstract: Drift waves occur universally in magnetized plasmas producing the dominant mechanism for the transport of particles, energy and momentum across magnetic field lines. A wealth of information obtained from quasistationary laboratory experiments for plasma confinement is reviewed for drift waves driven unstable by density gradients, temperature gradients and trapped particle effects. The modern understanding of Bohm transport and the role of sheared flows and magnetic shear in reducing the transport to the gyro-Bohm rate are explained and illustrated with large scale computer simulations. The types of mixed wave and vortex turbulence spontaneously generated in nonuniform plasmas are derived with reduced magnetized fluid descriptions. The types of theoretical descriptions reviewed include weak turbulence theory, Kolmogorov anisotropic spectral indices, and the mixing length. A number of standard turbulent diffusivity formulas are given for the various space-time scales of the drift-wave turbulent mixing.

1,076 citations


Journal ArticleDOI
TL;DR: In this article, it is shown that a cycle exists which is local to the near-wall region and does not depend on the outer flow, and that the presence of the wall seems to be only necessary to maintain the mean shear.
Abstract: Numerical experiments on modified turbulent channels at moderate Reynolds numbers are used to differentiate between several possible regeneration cycles for the turbulent fluctuations in wall-bounded flows. It is shown that a cycle exists which is local to the near-wall region and does not depend on the outer flow. It involves the formation of velocity streaks from the advection of the mean profile by streamwise vortices, and the generation of the vortices from the instability of the streaks. Interrupting any of those processes leads to laminarization. The presence of the wall seems to be only necessary to maintain the mean shear. The generation of secondary vorticity at the wall is shown to be of little importance in turbulence generation under natural circumstances. Inhibiting its production increases turbulence intensity and drag.

867 citations


Journal ArticleDOI
TL;DR: Very large-scale motions in the form of long regions of streamwise velocity fluctuation are observed in the outer layer of fully developed turbulent pipe flow over a range of Reynolds numbers.
Abstract: Very large-scale motions in the form of long regions of streamwise velocity fluctuation are observed in the outer layer of fully developed turbulent pipe flow over a range of Reynolds numbers. The premultiplied, one-dimensional spectrum of the streamwise velocity measured by hot-film anemometry has a bimodal distribution whose components are associated with large-scale motion and a range of smaller scales corresponding to the main turbulent motion. The characteristic wavelength of the large-scale mode increases through the logarithmic layer, and reaches a maximum value that is approximately 12–14 times the pipe radius, one order of magnitude longer than the largest reported integral length scale, and more than four to five times longer than the length of a turbulent bulge. The wavelength decreases to approximately two pipe radii at the pipe centerline. It is conjectured that the very large-scale motions result from the coherent alignment of large-scale motions in the form of turbulent bulges or packets of...

853 citations


Journal ArticleDOI
TL;DR: In this paper, the level-set approach is applied to a regime of premixed turbulent combustion where the Kolmogorov scale is smaller than the flame thickness, called the thin reaction zones regime, characterized by the condition that small eddies can penetrate into the preheat zone, but not into the reaction zone.
Abstract: The level-set approach is applied to a regime of premixed turbulent combustion where the Kolmogorov scale is smaller than the flame thickness. This regime is called the thin reaction zones regime. It is characterized by the condition that small eddies can penetrate into the preheat zone, but not into the reaction zone.By considering the iso-scalar surface of the deficient-species mass fraction Y immediately ahead of the reaction zone a field equation for the scalar quantity G(x, t) is derived, which describes the location of the thin reaction zone. It resembles the level-set equation used in the corrugated flamelet regime, but the resulting propagation velocity s*L normal to the front is a fluctuating quantity and the curvature term is multiplied by the diffusivity of the deficient species rather than the Markstein diffusivity. It is shown that in the thin reaction zones regime diffusive effects are dominant and the contribution of s*L to the solution of the level-set equation is small.In order to model turbulent premixed combustion an equation is used that contains only the leading-order terms of both regimes, the previously analysed corrugated flamelets regime and the thin reaction zones regime. That equation accounts for non-constant density but not for gas expansion effects within the flame front which are important in the corrugated flamelets regime. By splitting G into a mean and a fluctuation, equations for the Favre mean [Gtilde]and the variance [Gtilde]″2 are derived. These quantities describe the mean flame position and the turbulent flame brush thickness, respectively. The equation for [Gtilde]″2 is closed by considering two-point statistics. Scaling arguments are then used to derive a model equation for the flame surface area ratio [rhotilde]. The balance between production, kinematic restoration and dissipation in this equation leads to a quadratic equation for the turbulent burning velocity. Its solution shows the ‘bending’ behaviour of the turbulent to laminar burning velocity ratio sT/sL, plotted as a function of v′/sL. It is shown that the bending results from the transition from the corrugated amelets to the thin reaction zones regimes. This is equivalent to a transition from Damkohler's large-scale to his small-scale turbulence regime.

728 citations


Journal ArticleDOI
TL;DR: In this paper, a roughness-viscosity model was proposed to interpret the experimental data and the results indicated significant departure of flow characteristics from the predictions of the conventional theory for microtubes with smaller diameters.

711 citations


Journal ArticleDOI
TL;DR: In this article, the authors derive a shock capturing tool able to treat turbulence with minimum dissipation out of the shock for a large-eddy simulation (LES) of the interaction.

605 citations


Journal ArticleDOI
TL;DR: In this article, the roughness sublayer, surface layer, local similarity, z-less stratification and the region near the boundary-layer top are examined in the stable boundary layer.
Abstract: Various features of different stability regimes of the stable boundary layer are discussed. Traditional layering is examined in terms of the roughness sublayer, surface layer, local similarity, z-less stratification and the region near the boundary-layer top. In the very stable case, the strongest turbulence may be detached from the surface and generated by shear associated with a low level jet, gravity waves or meandering motions. In this case, similarity theory and the traditional concept of a boundary-layer break down. The elevated turbulence may intermittently recouple to the surface. Inability to adequately measure turbulent fluxes in very stable conditions limits our knowledge of this regime.

Journal ArticleDOI
TL;DR: In this paper, the authors derived the energy-dissipation coefficient of uniform, randomly driven turbulence with the ZEUS astrophysical MHD code, which is found to be with ηv = 0.21/π, where vrms is the root-mean-square (rms) velocity in the region, Ekin is the total kinetic energy, m is the mass of the region and is the driving wavenumber.
Abstract: Molecular clouds have broad line widths, which suggests turbulent supersonic motions in the clouds. These motions are usually invoked to explain why molecular clouds take much longer than a free-fall time to form stars. Classically, it was thought that supersonic hydrodynamical turbulence would dissipate its energy quickly but that the introduction of strong magnetic fields could maintain these motions. A previous paper has shown, however, that isothermal, compressible MHD and hydrodynamical turbulence decay at virtually the same rate, requiring that constant driving occur to maintain the observed turbulence. In this paper, direct numerical computations of uniform, randomly driven turbulence with the ZEUS astrophysical MHD code are used to derive the value of the energy-dissipation coefficient, which is found to be with ηv = 0.21/π, where vrms is the root-mean-square (rms) velocity in the region, Ekin is the total kinetic energy in the region, m is the mass of the region, and is the driving wavenumber. The ratio τ of the formal decay time Ekin/kin of turbulence to the free-fall time of the gas can then be shown to be where Mrms is the rms Mach number, and κ is the ratio of the driving wavelength to the Jeans wavelength. It is likely that κ < 1 is required for turbulence to support gas against gravitational collapse, so the decay time will probably always be far less than the free-fall time in molecular clouds, again showing that turbulence there must be constantly and strongly driven. Finally, the typical decay time constant of the turbulence can be shown to be where is the driving wavelength.

Journal ArticleDOI
TL;DR: Noncircular jets have been identified as an efficient technique of passive flow control that allows significant improvements of performance in various practical systems at a relatively low cost because noncircular jet rely solely on changes in the geometry of the nozzle as discussed by the authors.
Abstract: Noncircular jets have been the topic of extensive research in the last fifteen years. These jets were identified as an efficient technique of passive flow control that allows significant improvements of performance in various practical systems at a relatively low cost because noncircular jets rely solely on changes in the geometry of the nozzle. The applications of noncircular jets discussed in this review include improved large- and small-scale mixing in low- and high-speed flows, and enhanced combustor performance, by improving combustion efficiency, reducing combustion instabilities and undesired emissions. Additional applications include noise suppression, heat transfer, and thrust vector control (TVC). The flow patterns associated with noncircular jets involve mechanisms of vortex evolution and interaction, flow instabilities, and fine-scale turbulence augmentation. Stability theory identified the effects of initial momentum thickness distribution, aspect ratio, and radius of curvature on the initial flow evolution. Experiments revealed complex vortex evolution and interaction related to selfinduction and interaction between azimuthal and axial vortices, which lead to axis switching in the mean flow field. Numerical simulations described the details and clarified mechanisms of vorticity dynamics and effects of heat release and reaction on noncircular jet behavior.

Book ChapterDOI
01 Jan 1999
TL;DR: In this article, the authors presented the first true applications of Detached-Eddy Simulation (DES), in the sense of being three-dimensional, and treated an airfoil in the challenging regime of massive separation, in that lift and drag are within 10% of the experimental results at all angles of attack, to 90°.
Abstract: We present the first true applications of Detached-Eddy Simulation (DES), in the sense of being three-dimensional. DES was defined in 1997 with hopes of combining the strengths of Reynolds-averaged methods and of Large-Eddy Simulations, in a non-zonal manner, to treat separated flows at high Reynolds numbers. We first simulate isotropic turbulence, to check the concept in LES mode and set its adjustable constant. Smooth inertial ranges are obtained up to the cutoff in the spectra. We then treat an airfoil in the challenging regime of massive separation and do so very successfully, in that lift and drag are within 10% of the experimental results at all angles of attack, to 90°. Such an accuracy is not achieved with traditional modelling, even unsteady, which gives up to 40% error. Cost puts a pure LES of the same flow (at Reynolds number 105 and beyond) out of reach on any computer, yet we use personal computers for the DES, and about 200,000 grid points. On the other hand, grid refinement, domain-size and Reynolds-number studies have not been completed yet. Hysteresis in the 15 - 25° range has not been addressed.

Book
24 Feb 1999
TL;DR: In this article, a Lagrangian framework is used to model mixing of non-reacting materials, from Turbulent Diffusion to Mixing on Molecular Scale, and the evaluation of mixing models is presented.
Abstract: Introduction-Mixing and Reaction. Bulk Flow Patterns and the Selectivity of Slow Reactions. Fast Reactions and the Limits of Classical Methods. The Nature and Definition of Turbulence. Theory of Turbulence and Models of Turbulent Flow. Mixing of Non-Reacting Materials: From Turbulent Diffusion to Mixing on Molecular Scale. Analysis and Modelling of Mixing of Reactive Materials. Mixing and Chemical Reaction in a Lagrangian Framework-Mechanistic Models. The Evaluation of Mixing Models: General Considerations. Mechanisms and Kinetics of Some Test Reactions. Model-Experiment Comparisons when Micromixing Controls. Model-Experiment Comparisons when Micro- and Mesomixing Control. Characteristics of Various Mixers. Precipitation. Further Applications. Index.

Journal ArticleDOI
TL;DR: In this article, the authors present experimental force and power measurements demonstrating that the power required to propel an actively swimming, streamlined, fish-like body is significantly smaller than the power needed to tow the body straight and rigid at the same speed U.
Abstract: We present experimental force and power measurements demonstrating that the power required to propel an actively swimming, streamlined, fish-like body is significantly smaller than the power needed to tow the body straight and rigid at the same speed U. The data have been obtained through accurate force and motion measurements on a laboratory fish-like robotic mechanism, 1.2 m long, covered with a flexible skin and equipped with a tail fin, at Reynolds numbers up to 106, with turbulence stimulation. The lateral motion of the body is in the form of a travelling wave with wavelength λ and varying amplitude along the length, smoothly increasing from the front to the tail end. A parametric investigation shows sensitivity of drag reduction to the non-dimensional frequency (Strouhal number), amplitude of body oscillation and wavelength λ, and angle of attack and phase angle of the tail fin. A necessary condition for drag reduction is that the phase speed of the body wave be greater than the forward speed U. Power estimates using an inviscid numerical scheme compare favourably with the experimental data. The method employs a boundary-integral method for arbitrary flexible body geometry and motions, while the wake shed from the fish-like form is modelled by an evolving desingularized dipole sheet.

Journal ArticleDOI
TL;DR: In this article, experimental results on the turbulent, strongly swirling flow field in a reverse flow gas cyclone separator are presented, and used to evaluate the performance of three turbulence closure models.

Journal ArticleDOI
TL;DR: In this paper, a semi-empirical theory is developed for the prediction of the spectrum, intensity, and directivity of the fine-scale turhulence noise from high-speed jets.
Abstract: It is known that turhulent mixing noise from high-speed jets consists of two components. They are the noise from large turbulent structures in the form of Mach wave radiation and the less directional fine-scale turbulence noise. The Mach wave radiation dominates in the downstream direction. The fine-scale turbulence noise dominates in the sideline and upstream directions. A semiempirical theory is developed for the prediction of the spectrum, intensity, and directivity of the fine-scale turhulence noise. The prediction method is self-contained. The turbulence information is supplied by the k-e turhulence model. The theory contains three empirical constants beyond those of the k-e model. These constants are determined by best fit of the calculated noise spectra to experimental measurements. Extensive comparisons between calculated and measured noise spectra over a wide range of directions of radiation,jet velocities, and temperatures have heen carried out. Excellent agreements are found. It is believed that the present theory offers significant improvements over current empirical or semiempirical jet noise prediction methods in use. There is no first principle jet noise theory at the present time.

Journal ArticleDOI
TL;DR: In this article, a premixed ducted flame, burning in the wake of a bluff-body flame-holder, is considered and a kinematic model of the response of the flame to flow disturbances is developed.
Abstract: A premixed ducted flame, burning in the wake of a bluff-body flame-holder, is considered. For such a flame, interaction between acoustic waves and unsteady combustion can lead to self-excited oscillations. The concept of a time-invariant turbulent flame speed is used to develop a kinematic model of the response of the flame to flow disturbances. Variations in the oncoming flow velocity at the flame-holder drive perturbations in the flame initiation surface and hence in the instantaneous rate of heat release. For linear fluctuations, the transfer function between heat release and velocity can be determined analytically from the model and is in good agreement with experiment across a wide frequency range. For nonlinear fluctuations, the model reproduces the flame surface distortions seen in schlieren films.Coupling this kinematic flame model with an analysis of the acoustic waves generated in the duct by the unsteady combustion enables the time evolution of disturbances to be calculated. Self-excited oscillations occur above a critical fuel–air ratio. The frequency and amplitude of the resulting limit cycles are in satisfactory agreement with experiment. Flow reversal is predicted to occur during part of the limit-cycle oscillation and the flame then moves upstream of the flame-holder, just as in experimental visualizations. The main nonlinearity is identified in the rate of heat release, which essentially ‘saturates’ once the amplitude of the velocity fluctuation exceeds its mean. We show that, for this type of nonlinearity, describing function analysis can be used to give a good estimate of the limit-cycle frequency and amplitude from a quasi-nonlinear theory.

Journal ArticleDOI
TL;DR: In this paper, the emission spectrum in velocity slices of data (channel maps) and derive its dependence on the statistics of HI velocity and density fields. And the authors showed that if the density spectrum is steep, the short-wave asymptotics of the emissivity spectrum is dominated by velocity fluctuations, and the velocity fluctuations make the emission spectra shallower, provided that the data slices are sufficiently thin.
Abstract: The distribution of atomic hydrogen in the Galactic plane is usually mapped using the Doppler shift of 21cm emission line. We calculate the emission spectrum in velocity slices of data (channel maps) and derive its dependence on the statistics of HI velocity and density fields. We find that (a) if the density spectrum is steep, i.e. n<-3, the short-wave asymptotics of the emissivity spectrum is dominated by velocity fluctuations; (b) the velocity fluctuations make the emission spectra shallower, provided that the data slices are sufficiently thin. In other words, turbulent velocity creates small scale structure that can erroneously be identified as clouds. The contribution of fluctuations in warm HI is suppressed relative to cold component when velocity channels used are narrower than warm HI thermal velocity and small angular scale fluctuations are measured. We calculate how emission spectra vary with the change of velocity slice thickness and show that the observational 21cm data is consistent with the explanation that intensity fluctuations within individual channel maps are generated by a turbulent velocity field. As the thickness of velocity slices increases density fluctuations get to dominate the emissivity. This allows to disentangle velocity and density statistics. Application of our technique to the Galactic and SMC data reveals spectra of density and velocity with the power law index close to -11/3. This is a Kolmogorov index, but the explanation of the spectrum appealing to the Kolmogorov-type cascade faces substantial difficulties. We generalize our treatment for the case of a statistical study of turbulence inside individual clouds. The mathematical machinery developed is applicable to other emission lines.

Journal ArticleDOI
TL;DR: In this paper, the second-order structure functions are derived and compared with calculations based on wind data from 5754 airplane flights, reported in the MOZAIC data set, and two relations are derived, showing that this function is generally positive in the 2D case, contrary to the 3D case.
Abstract: The statistical features of turbulence can be studied either through spectral quantities, such as the kinetic energy spectrum, or through structure functions, which are statistical moments of the difference between velocities at two points separated by a variable distance. In this paper structure function relations for two-dimensional turbulence are derived and compared with calculations based on wind data from 5754 airplane flights, reported in the MOZAIC data set. For the third-order structure function two relations are derived, showing that this function is generally positive in the two-dimensional case, contrary to the three-dimensional case. In the energy inertial range the third-order structure function grows linearly with separation distance and in the enstrophy inertial range it grows cubically with separation distance. A Fourier analysis shows that the linear growth is a reflection of a constant negative spectral energy flux, and the cubic growth is a reflection of a constant positive spectral enstrophy flux. Various relations between second-order structure functions and spectral quantities are also derived. The measured second-order structure functions can be divided into two different types of terms, one of the form r2/3, giving a k−5/3-range and another, including a logarithmic dependence, giving a k−3-range in the energy spectrum. The structure functions agree better with the two-dimensional isotropic relation for larger separations than for smaller separations. The flatness factor is found to grow very fast for separations of the order of some kilometres. The third-order structure function is accurately measured in the interval [30, 300] km and is found to be positive. The average enstrophy flux is measured as Πω≈1.8×10−13 s−3 and the constant in the k−3-law is measured as [Kscr ]≈0.19. It is argued that the k−3-range can be explained by two-dimensional turbulence and can be interpreted as an enstrophy inertial range, while the k−5/3-range can probably not be explained by two-dimensional turbulence and should not be interpreted as a two-dimensional energy inertial range.

Journal ArticleDOI
TL;DR: Forced turbulence in a rotating frame is studied using numerical simulations in a triply periodic box in this article, where the random forcing is three dimensional and localized about an intermediate wavenumber kf, and energy is transferred to scales larger than the forcing scale when the rotation rate is large enough.
Abstract: Forced turbulence in a rotating frame is studied using numerical simulations in a triply periodic box. The random forcing is three dimensional and localized about an intermediate wavenumber kf. The results show that energy is transferred to scales larger than the forcing scale when the rotation rate is large enough. The scaling of the energy spectrum approaches E(k)∝k−3 for k

Journal ArticleDOI
TL;DR: In this paper, a large-eddy simulation of turbulent premixed reacting flows in a gas turbine combustor (General Electric's lean premixed dry low-NOx LM6000) has been carried out to evaluate the potential of LES for design studies of realistic hardware.
Abstract: Large-eddy simulation (LES) of turbulent premixed reacting flows in a gas turbine combustor (General Electric's lean premixed dry low-NOx LM6000) has been carried out to evaluate the potential of LES for design studies of realistic hardware. A flamelet model for the premixed flame is combined with a dynamic model for the subgrid kinetic energy to simulate the propagation of the turbulent flame in this high swirl and high Reynolds number flow. Comparison of the computed results with experimental data indicate good agreement in spite of relatively coarse grid resolution employed in the LES. These results provide significant confidence that LES capability for design studies of practical interest is feasible in the near future.

Journal ArticleDOI
TL;DR: In this paper, a single-phase forced convection in deep rectangular microchannels has been studied for developing laminar flow and the results show that, in terms of flow and heat transfer characteristics, the microchannel system designed for developing Laminar Flow outperforms the comparable single channel system for turbulent Flow.

Journal ArticleDOI
TL;DR: The dynamical foundations of α disk models are described in this article, where correlations in the fluctuating components of the disk velocity, magnetic field, and gravitational potential are related to the large-scale mean flow dynamics used in phenomenological viscous disk models.
Abstract: The dynamical foundations of α disk models are described At the heart of the viscous formalism of accretion disk models are correlations in the fluctuating components of the disk velocity, magnetic field, and gravitational potential We relate these correlations to the large-scale mean flow dynamics used in phenomenological viscous disk models MHD turbulence readily lends itself to the α formalism, but transport by self-gravity does not Nonlocal transport is an intrinsic property of turbulent self-gravitating disks, which in general cannot be captured by an α model Local energy dissipation and α-like behavior can be reestablished if the pattern speeds associated with the amplitudes of an azimuthal Fourier decomposition of the turbulence are everywhere close to the local rotation frequency In this situation, global wave transport must be absent Shearing box simulations, which employ boundary conditions forcing local behavior, are probably not an adequate tool for modeling the behavior of self-gravitating disks As a matter of principle, it is possible that disks that hover near the edge of gravitational stability may behave in accord with a local α model, but global simulations performed to date suggest matters are not this simple

Journal ArticleDOI
TL;DR: In this article, the effects of the Reynolds and Prandtl numbers on the turbulent heat transport in a fully developed turbulent channel flow with uniform heating from both walls were investigated and the instantaneous flow and thermal fields were visualized in order to investigate the structures of streaks and vortices.

01 Jan 1999
TL;DR: In this paper, the authors investigated the high Reynolds number zero pressure gradient turbulent boundary layers in an incompressible flow without any effects of heat-transfer and found that the inner limit of overlap region was found to scale on the viscous length scale (ν/uτ) and was estimated to be y = 200.
Abstract: This thesis deals with the problem of high Reynolds number zero pressuregradient turbulent boundary layers in an incompressible flow without any effects of heat-transfer. The zero-pressure gradient turbulent boundary layer is one of the canonical shear flows important in many applications and of large theoretical interest. The investigation was carried out through an experimental study in the MTL wind-tunnel at KTH, where the fluctuating velocity components and the fluctuating wall-shear stress in a turbulent boundary layer were measured using hot-wire and hot-film anemometry. Attempts were made to answer some basic and “classical” questions concerning turbulent boundary boundary layers. The classical two layer theory was confirmed and constant values of the slope of the logarithmic overlap region (i.e. the von Karman constant) and the additive constants were found and estimated to κ = 0.38, B = 4.1 and B1 = 3.6 (δ = δ95). The inner limit of overlap region was found to scale on the viscous length scale (ν/uτ) and was estimated to be y = 200, i.e. considerably further out compared to previous knowledge. The outer limit of the overlap region was found to scale on the outer length scale and was estimated to be y/δ = 0.15. This also means that a universal overlap region only can exist for Reynolds numbers of at least Reθ ≈ 6000. The values of the newly determined limits explain the Reynolds number variation found in some earlier experiments. Measurements of the fluctuating wall-shear stress using the hot-wire-onthe-wall technique and a MEMS hot-film sensor show that the turbulence intensity τr.m.s./τw is close to 0.41 at Reθ ≈ 9800. A numerical and experimental investigation of the behavior of double wire probes were carried out and showed that the Peclet number based on wire separation should be larger than about 50 to ensure an acceptably low level of thermal interaction. Results are presented for two-point correlations between the wall-shear stress and the streamwise velocity component for separations in both the wallnormal-streamwise plane and the wall-normal-spanwise plane. Turbulence producing events are further investigated using conditional averaging of isolated shear-layer events. Comparisons are made with results from other experiments and numerical simulations. Descriptors: Fluid mechanics, turbulence, boundary layers, high Reynolds number, zero-pressure gradient, hot-wire, hot-film anemometry, oil-film interferometry, structures, streak spacing, micro-electro-mechanical-systems.

Journal ArticleDOI
TL;DR: In this paper, large eddy simulations were performed on the flow in a baffled stirred tank, drien by a Rushton turbine at Res 29,000, using a lattice Boltzmann scheme for discretizing the Naier ) Stokes equations, and a force-field technique for representing the action of the impeller on the fluid.
Abstract: Large eddy simulations were performed on the flow in a baffled stirred tank, drien by a Rushton turbine at Res 29,000. The simulation procedure consisted of a lattice ) Boltzmann scheme for discretizing the Naier ) Stokes equations, and a force- field technique for representing the action of the impeller on the fluid. The subgrid-scale model was a conentional Smagorinsky model with a Smagorinsky constant c s 0.12. s The uniform, cubic computational grid had a size of about 6 = 10 6 nodes. The com- puter code was implemented on a parallel, shared-memory computer platform. The results on the phase-resoled aerage flow, as well as on the turbulence characteristics, are compared with phase-resoled experimental data. The trailingortex structure in the ¤icinity of the impeller was well represented by the simulations.

Journal ArticleDOI
TL;DR: In this paper, the authors argue that the interaction of turbulence with the polymers introduces mean and fluctuating polymer stresses which can create turbulence, and that the effect of turbulence modification depends on the manner by which polymers are introduced into the flow.
Abstract: Measurements of turbulence properties of solutions of polymers have been made over a large range of drag-reduction, in a fully-developed channel flow. At flows close to maximum drag-reduction the Reynolds stresses were approximately zero over the whole cross section of the channel. Added mean polymer stresses were observed in the viscous wall region for small drag-reduction and over the whole cross-section for large drag-reduction. Even though the Reynolds stresses are zero, the velocity profile is not parabolic because of the presence of these mean stresses. We interpret the results by arguing that the interaction of turbulence with the polymers introduces mean and fluctuating polymer stresses which can create turbulence. The observation that the turbulence modification depends on the manner by which the polymers are introduced into the flow supports the notion that the polymers need to form aggregates in order to be effective.

Journal ArticleDOI
TL;DR: In this paper, the Eulerian-Eulerian model is used for the hydrodynamic simulation of a two-phase gas-liquid flow in a laboratory scale bubble column.