scispace - formally typeset
Search or ask a question

Showing papers on "Turbulence published in 2010"


Journal ArticleDOI
TL;DR: A review of the current state-of-the-art experimental and computational techniques for turbulent dispersed multiphase flows, their strengths and limitations, and opportunities for the future can be found in this paper.
Abstract: Turbulent dispersed multiphase flows are common in many engineering and environmental applications. The stochastic nature of both the carrier-phase turbulence and the dispersed-phase distribution makes the problem of turbulent dispersed multiphase flow far more complex than its single-phase counterpart. In this article we first review the current state-of-the-art experimental and computational techniques for turbulent dispersed multiphase flows, their strengths and limitations, and opportunities for the future. The review then focuses on three important aspects of turbulent dispersed multiphase flows: the preferential concentration of particles, droplets, and bubbles; the effect of turbulence on the coupling between the dispersed and carrier phases; and modulation of carrier-phase turbulence due to the presence of particles and bubbles.

1,401 citations


Journal ArticleDOI
TL;DR: In this paper, a suite of large eddy simulations (LES), in which wind turbines are modeled using the classical "drag disk" concept, is performed for various wind-turbine arrangements, turbine loading factors, and surface roughness values.
Abstract: It is well known that when wind turbines are deployed in large arrays, their efficiency decreases due to complex interactions among themselves and with the atmospheric boundary layer (ABL). For wind farms whose length exceeds the height of the ABL by over an order of magnitude, a “fully developed” flow regime can be established. In this asymptotic regime, changes in the streamwise direction can be neglected and the relevant exchanges occur in the vertical direction. Such a fully developed wind-turbine array boundary layer (WTABL) has not been studied systematically before. A suite of large eddy simulations (LES), in which wind turbines are modeled using the classical “drag disk” concept, is performed for various wind-turbine arrangements, turbine loading factors, and surface roughness values. The results are used to quantify the vertical transport of momentum and kinetic energy across the boundary layer. It is shown that the vertical fluxes of kinetic energy are of the same order of magnitude as the power...

807 citations


Journal ArticleDOI
TL;DR: In this paper, the authors study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing and compressive (curl-free), and compare their results to observations.
Abstract: Context. Density and velocity fluctuations on virtually all scales observed with modern telescopes show that molecular clouds (MCs) are turbulent. The forcing and structural characteristics of this turbulence are, however, still poorly understood.Aims. To shed light on this subject, we study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing and compressive (curl-free) forcing, and compare our results to observations.Methods. We solve the equations of hydrodynamics on grids with up to 10243 cells for purely solenoidal and purely compressive forcing. Eleven lower-resolution models with different forcing mixtures are also analysed.Results. Using Fourier spectra and Δ -variance, we find velocity dispersion-size relations consistent with observations and independent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger compression at the same rms Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs). We compare our results to different characterisations of several observed regions, and find evidence of different forcing functions. Column density PDFs in the Perseus MC suggest the presence of a mainly compressive forcing agent within a shell, driven by a massive star. Although the PDFs are close to log-normal, they have non-Gaussian skewness and kurtosis caused by intermittency. Centroid velocity increments measured in the Polaris Flare on intermediate scales agree with solenoidal forcing on that scale. However, Δ -variance analysis of the column density in the Polaris Flare suggests that turbulence is driven on large scales, with a significant compressive component on the forcing scale. This indicates that, although likely driven with mostly compressive modes on large scales, turbulence can behave like solenoidal turbulence on smaller scales. Principal component analysis of G216-2.5 and most of the Rosette MC agree with solenoidal forcing, but the interior of an ionised shell within the Rosette MC displays clear signatures of compressive forcing.Conclusions. The strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primarily in swept-up shells. Finally, we emphasise the role of the sonic scale for protostellar core formation, because core formation close to the sonic scale would naturally explain the observed subsonic velocity dispersions of protostellar cores.

778 citations


Journal ArticleDOI
TL;DR: In this paper, statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared, and the resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer.
Abstract: Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Reθ = 500–4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient cf or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy.

752 citations


Journal ArticleDOI
TL;DR: In this article, the properties of the structure functions and other small-scale quantities in turbulent Rayleigh-Benard convection are reviewed from an experimental, theoretical, and numerical point of view.
Abstract: The properties of the structure functions and other small-scale quantities in turbulent Rayleigh-Benard convection are reviewed, from an experimental, theoretical, and numerical point of view. In particular, we address the question of whether, and if so where in the flow, the so-called Bolgiano-Obukhov scaling exists, i.e., Sθ(r) ∼ r2/5 for the second-order temperature structure function and Su(r) ∼ r6/5 for the second-order velocity structure function. Apart from the anisotropy and inhomogeneity of the flow, insufficiently high Rayleigh numbers, and intermittency corrections (which all hinder the identification of such a potential regime), there are also reasons, as a matter of principle, why such a scaling regime may be limited to at most a decade, namely the lack of clear scale separation between the Bolgiano length scale LB and the height of the cell.

750 citations


Journal ArticleDOI
TL;DR: In this paper, a model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behavior of the very large scale motions.
Abstract: A model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behaviour of the very large scale motions. The model is derived by treating the nonlinearity in the perturbation equation (involving the Reynolds stress) as an unknown forcing, yielding a linear relationship between the velocity field response and this nonlinearity. We do not assume small perturbations. We examine propagating helical velocity response modes that are harmonic in the wall-parallel directions and in time, permitting comparison of our results to experimental data. The steady component of the velocity field that varies only in the wall-normal direction is identified as the turbulent mean profile. A singular value decomposition of the resolvent identifies the forcing shape that will lead to the largest velocity response at a given wavenumber–frequency combination. The hypothesis that these forcing shapes lead to response modes that will be dominant in turbulent pipe flow is tested by using physical arguments to constrain the range of wavenumbers and frequencies to those actually observed in experiments. An investigation of the most amplified velocity response at a given wavenumber–frequency combination reveals critical-layer-like behaviour reminiscent of the neutrally stable solutions of the Orr–Sommerfeld equation in linearly unstable flow. Two distinct regions in the flow where the influence of viscosity becomes important can be identified, namely wall layers that scale with R+1/2 and critical layers where the propagation velocity is equal to the local mean velocity, one of which scales with R+2/3 in pipe flow. This framework appears to be consistent with several scaling results in wall turbulence and reveals a mechanism by which the effects of viscosity can extend well beyond the immediate vicinity of the wall. The model reproduces inner scaling of the small scales near the wall and an approach to outer scaling in the flow interior. We use our analysis to make a first prediction that the appropriate scaling velocity for the very large scale motions is the centreline velocity, and show that this is in agreement with experimental results. Lastly, we interpret the wall modes as the motion required to meet the wall boundary condition, identifying the interaction between the critical and wall modes as a potential origin for an interaction between the large and small scales that has been observed in recent literature as an amplitude modulation of the near-wall turbulence by the very large scales.

594 citations


Journal ArticleDOI
TL;DR: The skin of fast-swimming sharks exhibits riblet structures aligned in the direction of flow that are known to reduce skin friction drag in the turbulent-flow regime.
Abstract: The skin of fast-swimming sharks exhibits riblet structures aligned in the direction of flow that are known to reduce skin friction drag in the turbulent-flow regime. Structures have been fabricated for study and application that replicate and improve upon the natural shape of the shark-skin riblets, providing a maximum drag reduction of nearly 10 per cent. Mechanisms of fluid drag in turbulent flow and riblet-drag reduction theories from experiment and simulation are discussed. A review of riblet-performance studies is given, and optimal riblet geometries are defined. A survey of studies experimenting with riblet-topped shark-scale replicas is also given. A method for selecting optimal riblet dimensions based on fluid-flow characteristics is detailed, and current manufacturing techniques are outlined. Due to the presence of small amounts of mucus on the skin of a shark, it is expected that the localized application of hydrophobic materials will alter the flow field around the riblets in some way beneficial to the goals of increased drag reduction.

551 citations


Journal ArticleDOI
TL;DR: The first three dimensional (3D) dispersion relations and k spectra of magnetic turbulence in the solar wind at subproton scales are shown and it is conjecture that the turbulence undergoes a transition range, where part of the energy is dissipated into proton heating via Landau damping and the remaining energy cascades down to electron scales where electron LandAU damping may predominate.
Abstract: We show the first three dimensional (3D) dispersion relations and k spectra of magnetic turbulence in the solar wind at subproton scales We used the Cluster data with short separations and applied the k-filtering technique to the frequency range where the transition to subproton scales occurs We show that the cascade is carried by highly oblique kinetic Alfven waves with ω(plas) ≤ 01ω(ci) down to k(⊥) ρ(i)∼2 Each k spectrum in the direction perpendicular to B0 shows two scaling ranges separated by a breakpoint (in the interval [04,1]k(⊥)ρ(i): a Kolmogorov scaling k(⊥)⁻¹ⁱ⁷ followed by a steeper scaling ∼k(⊥)⁻⁴ⁱ⁵ We conjecture that the turbulence undergoes a transition range, where part of the energy is dissipated into proton heating via Landau damping and the remaining energy cascades down to electron scales where electron Landau damping may predominate

483 citations


Book
08 Mar 2010
TL;DR: Wyngaard's book as mentioned in this paper is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences.
Abstract: Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.

473 citations


Journal ArticleDOI
09 Jul 2010-Science
TL;DR: A mathematical model is proposed to predict the near-wall turbulence given only large-scale information from the outer boundary layer region, which may enable new strategies for the control of turbulence and may provide a basis for improved engineering and weather prediction simulations.
Abstract: The behavior of turbulent fluid motion, particularly in the thin chaotic fluid layers immediately adjacent to solid boundaries, can be difficult to understand or predict. These layers account for up to 50% of the aerodynamic drag on modern airliners and occupy the first 100 meters or so of the atmosphere, thus governing wider meteorological phenomena. The physics of these layers is such that the most important processes occur very close to the solid boundary—the region where accurate measurements and simulations are most challenging. We propose a mathematical model to predict the near-wall turbulence given only large-scale information from the outer boundary layer region. This predictive capability may enable new strategies for the control of turbulence and may provide a basis for improved engineering and weather prediction simulations.

470 citations


01 Jan 2010
TL;DR: German0 et al. as discussed by the authors developed a new subgrid-scale (SGS) closure that appears to offer marked advantages over the widely used Smagorinsky closure, hence S, closure.
Abstract: Recently German0 et al. ’ subsequently designated G4, developed a new subgrid-scale (SGS) closure that appears to offer marked advantages over the widely used Smagorinsky,” hence S, closure. The S closure was first applied extensively to three-dimensional turbulence simulations by Deardorff.3 Lilly4 had earlier evaluated the necessary dimensionless coefficient for the S model, based on the assumption that the grid scale lies within an isotropic and homogeneous inertial range of turbulence. As described by Deardorff,5 Lilly’s value of the coefficient worked well when applied to turbulence produced by buoyant instability. For shear-driven turbulence, however, Deardorff and others found it necessary to use a smaller coefficient. These discrepancies have been verified by other investigators, but the reasons remain somewhat obscure. The G4 closure assumes use of the S formulation, but allows for temporal and spatial variability of the coefficient. It is determined by evaluating the stress-strain relationship at scales of motion a little larger than the grid scale, for which the stresses are explicitly resolved. In the present analysis, we follow G4 and also Moin et a1.,6 who extend the G4 analysis to compressible flow and advection of a passive scalar. A potentially important modification is introduced, by which the stress-strain relationship is optimized with a least squares approach. This also removes or reduces a singularity problem in the G4 formulation. We assume incompressible Boussinesq dynamics. The tensor equation of motion for variables that have been spatially averaged or filtered on the scale of their spatial resolution is given by

Journal ArticleDOI
TL;DR: In this paper, the authors present new correlations for the convective heat transfer and the friction factor developed from the experiments of nanoparticles comprised of aluminum oxide, copper oxide and silicon dioxide dispersed in 60% ethylene glycol and 40% water by mass.

Journal ArticleDOI
TL;DR: In this paper, a high-speed video imaging system was used to study the motion of bed load particles under steady and spatially uniform turbulent flow above a flat sediment bed of uniform grain size.
Abstract: [1] We report an experimental investigation of the motion of bed load particles under steady and spatially uniform turbulent flow above a flat sediment bed of uniform grain size. Using a high-speed video imaging system, we recorded the trajectories of the moving particles and measured their velocity and the length and duration of their flights, as well as the surface density of the moving particles. Our observations show that entrained particles exhibit intermittent motion composed of the succession of periods of “flight” and periods of rest. During one flight, a particle may go through phases of reptation, during which it moves in nearly persistent contact with the rough bed, and phases of saltation, during which it travels sufficiently high above the bed to reach high velocities. The distributions of longitudinal and transverse particle velocities obey a decreasing exponential and a Gaussian law, respectively. Interestingly, these observations are similar to those previously reported for viscous flows. The experimental results presented here support the erosion-deposition model of Charru (2006) and allow the calibration of the involved coefficients. In particular, noting τ*, the Shields number, and τ*c, the threshold Shields number, we find that (1) the surface density of moving particles increases linearly with τ* − τ*c; (2) the average particle velocity increases linearly with τ*1/2 − τ*c1/2, with a finite nonzero value at the threshold; (3) the flight duration scales with a characteristic settling time with no significant dependence on either τ* or the settling Reynolds number; and (4) the flight length increases linearly with τ*1/2 − τ*c1/2. The results presented in this paper should provide a valuable physical framework to describe bed form development in turbulent flows.

Journal ArticleDOI
TL;DR: An overview of the gyrokinetic framework and simulations to compute turbulent transport in fusion plasmas can be found in this article, where the main results which have been brought by simulations with regard to transport of fusion devices and fluctuation measurements are discussed.
Abstract: This overview is an assessment of the gyrokinetic framework and simulations to compute turbulent transport in fusion plasmas. It covers an introduction to the gyrokinetic theory, the principal numerical techniques which are being used to solve the gyrokinetic equations, fundamentals in gyrokinetic turbulence and the main results which have been brought by simulations with regard to transport in fusion devices and fluctuation measurements.

Journal ArticleDOI
TL;DR: The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation, and the hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dynamics of premixed confined swirling flames by examining their response to incident velocity perturbations and determined the generalized transfer function designated as the flame describing function (FDF) by sweeping a frequency range extending from 0 to 400 Hz and by changing the root mean square fluctuation level between 0% and 72% of the bulk velocity.

Journal ArticleDOI
TL;DR: In this paper, a model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behaviour of the very large scale motions.
Abstract: A model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behaviour of the very large scale motions. The model is derived by treating the nonlinearity in the perturbation equation (involving the Reynolds stress) as an unknown forcing, yielding a linear relationship between the velocity field response and this nonlinearity. We do not assume small perturbations. We examine propagating modes, permitting comparison of our results to experimental data, and identify the steady component of the velocity field that varies only in the wall-normal direction as the turbulent mean profile. The "optimal" forcing shape, that gives the largest velocity response, is assumed to lead to modes that will be dominant and hence observed in turbulent pipe flow. An investigation of the most amplified velocity response at a given wavenumber-frequency combination reveals critical layer-like behaviour reminiscent of the neutrally stable solutions of the Orr-Sommerfeld equation in linearly unstable flow. Two distinct regions in the flow where the influence of viscosity becomes important can be identified, namely a wall layer that scales with $R^{+1/2}$ and a critical layer, where the propagation velocity is equal to the local mean velocity, that scales with $R^{+2/3}$ in pipe flow. This framework appears to be consistent with several scaling results in wall turbulence and reveals a mechanism by which the effects of viscosity can extend well beyond the immediate vicinity of the wall.

Journal ArticleDOI
TL;DR: In this article, the authors explore some aspects of energy harvesting from unsteady, turbulent fluid flow using piezoelectric generators, where the authors use a three-way coupled interaction simulation that takes into account the aerodynamics, structural vibration, and electrical response of the generator.
Abstract: In the present work we explore some aspects of energy harvesting from unsteady, turbulent fluid flow using piezoelectric generators. Turbulent flows exhibit a large degree of coherence in their spatial and temporal scales, which provides a unique opportunity for energy harvesting. The voltage generated by short, flexible piezoelectric cantilever beams placed inside turbulent boundary layers and wakes of circular cylinders at high Reynolds numbers is investigated. Matching the fluid flow's predominant frequency with the natural frequency of the piezoelectric generator appears to maximize the piezoelectric output voltage. This voltage is also dependent on the generator's location inside the flow field. A three-way coupled interaction simulation that takes into account the aerodynamics, structural vibration, and electrical response of the piezoelectric generator has been developed. The simulation results agree reasonably well with the experimental data paving the way of using such a tool to estimate the performance of different energy harvesting devices within unsteady flow fields.

Journal ArticleDOI
TL;DR: In this article, the velocity and pressure fluctuations in the outer layers of wall-bounded turbulent flows are analyzed by comparing a new simulation of the zero-pressure-gradient boundary layer with older simulations of channels.
Abstract: The behaviour of the velocity and pressure fluctuations in the outer layers of wall-bounded turbulent flows is analysed by comparing a new simulation of the zero-pressure-gradient boundary layer with older simulations of channels. The 99 % boundary-layer thickness is used as a reasonable analogue of the channel half-width, but the two flows are found to be too different for the analogy to be complete. In agreement with previous results, it is found that the fluctuations of the transverse velocities and of the pressure are stronger in the boundary layer, and this is traced to the pressure fluctuations induced in the outer intermittent layer by the differences between the potential and rotational flow regions. The same effect is also shown to be responsible for the stronger wake component of the mean velocity profile in external flows, whose increased energy production is the ultimate reason for the stronger fluctuations. Contrary to some previous results by our group, and by others, the streamwise velocity fluctuations are also found to be higher in boundary layers, although the effect is weaker. Within the limitations of the non-parallel nature of the boundary layer, the wall-parallel scales of all the fluctuations are similar in both the flows, suggesting that the scale-selection mechanism resides just below the intermittent region, y/δ = 0.3–0.5. This is also the location of the largest differences in the intensities, although the limited Reynolds number of the boundary-layer simulation (Reθ ≈ 2000) prevents firm conclusions on the scaling of this location. The statistics of the new boundary layer are available from http://torroja.dmt.upm.es/ftp/blayers/.

Journal ArticleDOI
TL;DR: In this paper, the authors derived a lower bound estimate for the minimum number of computational mesh nodes required to conduct accurate numerical simulations of moderately high (BL-dominated) turbulent Rayleigh-Benard (RB) convection, in the thermal and kinetic boundary layer (BL) close to the bottom and top plates.
Abstract: Results on the Prandtl–Blasius-type kinetic and thermal boundary layer (BL) thicknesses in turbulent Rayleigh–Benard (RB) convection in a broad range of Prandtl numbers are presented. By solving the laminar Prandtl–Blasius BL equations, we calculate the ratio between the thermal and kinetic BL thicknesses, which depends on the Prandtl number only. It is approximated as for and as for , with . Comparison of the Prandtl–Blasius velocity BL thickness with that evaluated in the direct numerical simulations by Stevens et al (2010 J. Fluid Mech. 643 495) shows very good agreement between them. Based on the Prandtl–Blasius-type considerations, we derive a lower-bound estimate for the minimum number of computational mesh nodes required to conduct accurate numerical simulations of moderately high (BL-dominated) turbulent RB convection, in the thermal and kinetic BLs close to the bottom and top plates. It is shown that the number of required nodes within each BL depends on and and grows with the Rayleigh number not slower than . This estimate is in excellent agreement with empirical results, which were based on the convergence of the Nusselt number in numerical simulations

Journal ArticleDOI
TL;DR: In this paper, the effects of density stratification on magnetohydrodynamic turbulence driven by the magnetorotational instability in local simulations that adopt the shearing box approximation were examined.
Abstract: We examine the effects of density stratification on magnetohydrodynamic turbulence driven by the magnetorotational instability in local simulations that adopt the shearing box approximation. Our primary result is that, even in the absence of explicit dissipation, the addition of vertical gravity leads to convergence in the turbulent energy densities and stresses as the resolution increases, contrary to results for zero net flux, unstratified boxes. The ratio of total stress to midplane pressure has a mean of ~0.01, although there can be significant fluctuations on long (50?orbits) timescales. We find that the time-averaged stresses are largely insensitive to both the radial and the vertical aspect ratios of our simulation domain. For simulations with explicit dissipation, we find that stratification extends the range of Reynolds and magnetic Prandtl numbers for which turbulence is sustained, but the behavior of such simulations on long timescales is highly variable. Confirming the results of previous studies, we find oscillations in the large-scale toroidal field with periods of ~10?orbits and describe the dynamo process that underlies these cycles. We discuss possible origins for the different convergence properties of the stratified and unstratified domains and identify open questions that remain to be answered.

Journal ArticleDOI
TL;DR: In this paper, a detailed comparison of mixing efficiency of different mixers that have been characterized by the Villermaux/Dushman test reaction is presented, and it is shown how to obtain the theoretical mixing time and how to relate it with operating parameters as the Reynolds number of the flow and the specific power dissipation per mass unit of fluid.

Journal ArticleDOI
TL;DR: In this paper, the properties of ISM substructure and turbulence in hydrodynamic (AMR) galaxy simulations with resolutions up to 0.8 pc and 5 � 10 3 M� were analyzed.
Abstract: We study the properties of ISM substructure and turbulence in hydrodynamic (AMR) galaxy simulations with resolutions up to 0.8 pc and 5 � 10 3 M� . We analyse the power spectrum of the density distribution, and various components of the velocity field. We show that the disk thickness is about the average Jeans scale length, and is mainly regulated by gravitational instabilities. From this scale of energy injection, a turbulence cascade towards small-scale is observed, with almost isotropic small-scale motions. On scales larger than the disk thickness, density waves are observed, but there is also a full range of substructures with chaotic and strongly non-isotropic gas velocity dispersions. The power spectrum of vorticity in an LMC-sized model suggests that an inverse cascade of turbulence might be present, although energy input over a wide range of scales in the coupled gaseous+stellar fluid could also explain this quasi-2D regime on scales larger than the disk scale height. Similar regimes of gas turbulence are also found in massive high-redshift disks with high gas fractions. Disk properties and ISM turbulence appear to be mainly regulated by gravitational processes, both on large scales and inside dense clouds. Star formation feedback is however essential to maintain the ISM in a steady state by balancing a systematic gas dissipation into dense and small clumps. Our galaxy simulations employ a thermal model based on a barotropic Equation of State (EoS) aimed at modelling the equilibrium of gas between various heating and cooling processes. Denser gas is typically colder in this approach, which is shown to correctly reproduce the density structures of a star-forming, turbulent, unstable and cloudy ISM down to scales of a few parsecs.

Journal ArticleDOI
TL;DR: N nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated to study drag reduction efficiency studies on the surfaces.
Abstract: Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the two-way coupling effects of finite-size solid spherical particles on decaying isotropic turbulence using direct numerical simulation with an immersed boundary method.
Abstract: This study investigates the two-way coupling effects of finite-size solid spherical particles on decaying isotropic turbulence using direct numerical simulation with an immersed boundary method. We fully resolve all the relevant scales of turbulence around freely moving particles of the Taylor length-scale size, 1.2≤d/λ≤2.6. The particle diameter and Stokes number in terms of Kolmogorov length- and time scales are 16≤d/η≤35 and 38≤τp/τk≤178, respectively, at the time the particles are released in the flow. The particles mass fraction range is 0.026≤φm≤1.0, corresponding to a volume fraction of 0.01≤φv≤0.1 and density ratio of 2.56≤ρp/ρf≤10. The maximum number of dispersed particles is 6400 for φv=0.1. The typical particle Reynolds number is of O(10). The effects of the particles on the temporal development of turbulence kinetic energy E(t), its dissipation rate (t), its two-way coupling rate of change Ψp(t) and frequency spectra E(ω) are discussed.In contrast to particles with d η, is that E(t) is always smaller than that of the single-phase flow. In addition, Ψp(t) is always positive for particles with d > η, whereas it can be positive or negative for particles with d < η.

Journal ArticleDOI
TL;DR: In this paper, the effect of wind turbine wake on turbulence statistics was investigated in the wake of a model wind turbine placed in a boundary-layer flow under both neutral and stably stratified conditions.
Abstract: Wind-tunnel experiments were carried out to study turbulence statistics in the wake of a model wind turbine placed in a boundary-layer flow under both neutral and stably stratified conditions. High-resolution velocity and temperature measurements, obtained using a customized triple wire (cross-wire and cold wire) anemometer, were used to characterize the mean velocity, turbulence intensity, turbulent fluxes, and spectra at different locations in the wake. The effect of the wake on the turbulence statistics is found to extend as far as 20 rotor diameters downwind of the turbine. The velocity deficit has a nearly axisymmetric shape, which can be approximated by a Gaussian distribution and a power-law decay with distance. This decay in the near-wake region is found to be faster in the stable case. Turbulence intensity distribution is clearly non-axisymmetric due to the non-uniform distribution of the incoming velocity in the boundary layer. In the neutral case, the maximum turbulence intensity is located above the hub height, around the rotor tip location and at a distance of about 4–5.5 rotor diameters, which are common separations between wind turbines in wind farms. The enhancement of turbulence intensity is associated with strong shear and turbulent kinetic energy production in that region. In the stable case, the stronger shear in the incoming flow leads to a slightly stronger and larger region of enhanced turbulence intensity, which extends between 3 and 6 rotor diameters downwind of the turbine location. Power spectra of the streamwise and vertical velocities show a strong signature of the turbine blade tip vortices at the top tip height up to a distance of about 1–2 rotor diameters. This spectral signature is stronger in the vertical velocity component. At longer downwind distances, tip vortices are not evident and the von Karman formulation agrees well with the measured velocity spectra.

Journal ArticleDOI
TL;DR: In this paper, the effects of the nozzle-exit conditions on the flow and sound fields of initially laminar jets are computed by large-eddy simulations (LES) to investigate the effects.
Abstract: Round jets originating from a pipe nozzle are computed by large-eddy simulations (LES) to investigate the effects of the nozzle-exit conditions on the flow and sound fields of initially laminar jets. The jets are at Mach number 0.9 and Reynolds number 105, and exhibit exit boundary layers characterized by Blasius velocity profiles, maximum root-mean-square (r.m.s.) axial velocity fluctuations between 0.2 and 1.9% of the jet velocity, and momentum thicknesses varying from 0.003 to 0.023 times the jet radius. The far-field noise is determined from the LES data on a cylindrical surface by solving the acoustic equations. Jets with a thinner boundary layer develop earlier but at a slower rate, yielding longer potential cores and lower centreline turbulent intensities. Adding random pressure disturbances of low magnitude in the nozzle also increases the potential core length and reduces peak r.m.s. radial velocity fluctuations in the shear layer. In all the jets, the shear-layer transition is dominated by vortex rolling-ups and pairings, which generate strong additional acoustic components, but also amplify the downstream-dominant low-frequency noise component when the exit boundary layer is thick. The introduction of inlet noise however results in weaker pairings, thus spectacularly reducing their contributions to the sound field. This high sensitivity to the initial conditions is in good agreement with experimental observations.

Journal ArticleDOI
TL;DR: In this paper, the authors performed direct numerical simulation of turbulent boundary layers at Mach 5 with the ratio of wall-to-edge temperature Tw/Tδ from 1.0 to 5.4.
Abstract: In this paper, we perform direct numerical simulation (DNS) of turbulent boundary layers at Mach 5 with the ratio of wall-to-edge temperature Tw/Tδ from 1.0 to 5.4 (Cases M5T1 to M5T5). The influence of wall cooling on Morkovin's scaling, Walz's equation, the standard and modified strong Reynolds analogies, turbulent kinetic energy budgets, compressibility effects and near-wall coherent structures is assessed. We find that many of the scaling relations used to express adiabatic compressible boundary-layer statistics in terms of incompressible boundary layers also hold for non-adiabatic cases. Compressibility effects are enhanced by wall cooling but remain insignificant, and the turbulence dissipation remains primarily solenoidal. Moreover, the variation of near-wall streaks, iso-surface of the swirl strength and hairpin packets with wall temperature demonstrates that cooling the wall increases the coherency of turbulent structures. We present the mechanism by which wall cooling enhances the coherence of turbulence structures, and we provide an explanation of why this mechanism does not represent an exception to the weakly compressible hypothesis.

Journal ArticleDOI
TL;DR: In this article, the authors identify and provide an understanding of the principal parameters that govern the downstream wake structure and its recovery to the free-stream velocity profile, and demonstrate that there are a number of interdependent variables that affect the rate of wake recovery and will have a significant impact on the spacing of marine current turbines within an array.

Journal ArticleDOI
TL;DR: In this article, a model for the generation of fast solar wind in coronal holes, relying on heating that is dominated by turbulent dissipation of MHD fluctuations transported upward in the solar atmosphere, is presented.
Abstract: A model is presented for generation of fast solar wind in coronal holes, relying on heating that is dominated by turbulent dissipation of MHD fluctuations transported upward in the solar atmosphere. Scale-separated transport equations include large-scale fields, transverse Alfvenic fluctuations, and a small compressive dissipation due to parallel shears near the transition region. The model accounts for proton temperature, density, wind speed, and fluctuation amplitude as observed in remote sensing and in situ satellite data.