Topic

# Two-phase flow

About: Two-phase flow is a research topic. Over the lifetime, 21309 publications have been published within this topic receiving 486767 citations.

##### Papers published on a yearly basis

##### Papers

More filters

•

01 Jan 1965

TL;DR: Low Reynolds number flow theory finds wide application in such diverse fields as sedimentation, fluidization, particle-size classification, dust and mist collection, filtration, centrifugation, polymer and suspension rheology, and a host of other disciplines.

Abstract: Low Reynolds number flow theory finds wide application in such diverse fields as sedimentation, fluidization, particle-size classification, dust and mist collection, filtration, centrifugation, polymer and suspension rheology, flow through porous media, colloid science, aerosol and hydrosal technology, lubrication theory, blood flow, Brownian motion, geophysics, meteorology, and a host of other disciplines. This text provides a comprehensive and detailed account of the physical and mathematical principles underlying such phenomena, heretofore available only in the original literature.

4,648 citations

••

TL;DR: A level set method for capturing the interface between two fluids is combined with a variable density projection method to allow for computation of two-phase flow where the interface can merge/break and the flow can have a high Reynolds number.

Abstract: A level set approach for computing solutions to incompressible two-phase flow is presented. The interface between the two fluids is considered to be sharp and is described as the zero level set of a smooth function. A new treatment of the level set method allows us to efficiently maintain the level set function as the signed distance from the interface. We never have to explicitly reconstruct or find the zero level set. Consequently, we are able to handle arbitrarily complex topologies, large density and viscosity ratios, and surface tension, on relatively coarse grids. We use a second order projection method along with a second order upwinded procedure for advecting the momentum and level set equations. We consider the motion of air bubbles and water drops. We also compute flows with multiple fluids such as air, oil, and water.

4,148 citations

01 Jun 1995

TL;DR: In this article, a level set method for capturing the interface between two fluids is combined with a variable density projection method to allow for computation of two-phase flow where the interface can merge/break and the flow can have a high Reynolds number.

Abstract: A level set method for capturing the interface between two fluids is combined with a variable density projection method to allow for computation of two-phase flow where the interface can merge/break and the flow can have a high Reynolds number. A distance function formulation of the level set method enables one to compute flows with large density ratios (1000/1) and flows that are surface tension driven; with no emotional involvement. Recent work has improved the accuracy of the distance function formulation and the accuracy of the advection scheme. We compute flows involving air bubbles and water drops, to name a few. We validate our code against experiments and theory.

3,556 citations

••

TL;DR: A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components and is highly efficient to compute on massively parallel computers.

Abstract: A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components. Each of the components can be immiscible with the others and can have different mass values. The equilibrium state of each component can have a nonideal gas equation of state at a prescribed temperature exhibiting thermodynamic phase transitions. The scheme incorporated in this model is the introduction of an interparticle potential. The dynamical rules in this model are local so it is highly efficient to compute on massively parallel computers. This model has many applications in large-scale numerical simulations of various types of fluid flows.

2,719 citations