scispace - formally typeset
Search or ask a question

Showing papers on "Typing published in 2017"


Journal ArticleDOI
TL;DR: The standardization of nomenclature associated with antimicrobial resistance determinants through an internationally available database will facilitate the monitoring of the global dissemination of antimicrobial-resistant N. gonorrhoeae strains.
Abstract: A curated Web-based user-friendly sequence typing tool based on antimicrobial resistance determinants in Neisseria gonorrhoeae was developed and is publicly accessible (https://ngstar.canada.ca). The N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) molecular typing scheme uses the DNA sequences of 7 genes (penA, mtrR, porB, ponA, gyrA, parC, and 23S rRNA) associated with resistance to β-lactam antimicrobials, macrolides, or fluoroquinolones. NG-STAR uses the entire penA sequence, combining the historical nomenclature for penA types I to XXXVIII with novel nucleotide sequence designations; the full mtrR sequence and a portion of its promoter region; portions of ponA, porB, gyrA, and parC; and 23S rRNA sequences. NG-STAR grouped 768 isolates into 139 sequence types (STs) (n = 660) consisting of 29 clonal complexes (CCs) having a maximum of a single-locus variation, and 76 NG-STAR STs (n = 109) were identified as unrelated singletons. NG-STAR had a high Simpson's diversity index value of 96.5% (95% confidence interval [CI] = 0.959 to 0.969). The most common STs were NG-STAR ST-90 (n = 100; 13.0%), ST-42 and ST-91 (n = 45; 5.9%), ST-64 (n = 44; 5.72%), and ST-139 (n = 42; 5.5%). Decreased susceptibility to azithromycin was associated with NG-STAR ST-58, ST-61, ST-64, ST-79, ST-91, and ST-139 (n = 156; 92.3%); decreased susceptibility to cephalosporins was associated with NG-STAR ST-90, ST-91, and ST-97 (n = 162; 94.2%); and ciprofloxacin resistance was associated with NG-STAR ST-26, ST-90, ST-91, ST-97, ST-150, and ST-158 (n = 196; 98.0%). All isolates of NG-STAR ST-42, ST-43, ST-63, ST-81, and ST-160 (n = 106) were susceptible to all four antimicrobials. The standardization of nomenclature associated with antimicrobial resistance determinants through an internationally available database will facilitate the monitoring of the global dissemination of antimicrobial-resistant N. gonorrhoeae strains.

142 citations


Journal ArticleDOI
TL;DR: WGS-based typing should replace PFGE as the primary typing method for L. monocytogenes, refined epidemiologic investigations to include only phylogenetically closely related isolates, improved source identification, and facilitated epidemiological investigations, enabling identification of more outbreaks at earlier stages.
Abstract: During 2015-2016, we evaluated the performance of whole-genome sequencing (WGS) as a routine typing tool. Its added value for microbiological and epidemiologic surveillance of listeriosis was compared with that for pulsed-field gel electrophoresis (PFGE), the current standard method. A total of 2,743 Listeria monocytogenes isolates collected as part of routine surveillance were characterized in parallel by PFGE and core genome multilocus sequence typing (cgMLST) extracted from WGS. We investigated PFGE and cgMLST clusters containing human isolates. Discrimination of isolates was significantly higher by cgMLST than by PFGE (p<0.001). cgMLST discriminated unrelated isolates that shared identical PFGE profiles and phylogenetically closely related isolates with distinct PFGE profiles. This procedure also refined epidemiologic investigations to include only phylogenetically closely related isolates, improved source identification, and facilitated epidemiologic investigations, enabling identification of more outbreaks at earlier stages. WGS-based typing should replace PFGE as the primary typing method for L. monocytogenes.

124 citations


Journal ArticleDOI
08 Jun 2017-PLOS ONE
TL;DR: Good correlation between PFGE and cgMLST clustering is found and the system will allow inter-laboratory exchange of data, with 0–8 allelic differences within a pulsotype, and 40–2,166 differences between pulsotypes.
Abstract: We have employed whole genome sequencing to define and evaluate a core genome multilocus sequence typing (cgMLST) scheme for Acinetobacter baumannii. To define a core genome we downloaded a total of 1,573 putative A. baumannii genomes from NCBI as well as representative isolates belonging to the eight previously described international A. baumannii clonal lineages. The core genome was then employed against a total of fifty-three carbapenem-resistant A. baumannii isolates that were previously typed by PFGE and linked to hospital outbreaks in eight German cities. We defined a core genome of 2,390 genes of which an average 98.4% were called successfully from 1,339 A. baumannii genomes, while Acinetobacter nosocomialis, Acinetobacter pittii, and Acinetobacter calcoaceticus resulted in 71.2%, 33.3%, and 23.2% good targets, respectively. When tested against the previously identified outbreak strains, we found good correlation between PFGE and cgMLST clustering, with 0–8 allelic differences within a pulsotype, and 40–2,166 differences between pulsotypes. The highest number of allelic differences was between the isolates representing the international clones. This typing scheme was highly discriminatory and identified separate A. baumannii outbreaks. Moreover, because a standardised cgMLST nomenclature is used, the system will allow inter-laboratory exchange of data.

95 citations


Journal ArticleDOI
TL;DR: In addition to the rapid and effective high-resolution analysis of large numbers of diverse isolates, the cgMLST scheme enabled the efficient identification of very closely related isolates from a well-defined single-source campylobacteriosis outbreak.
Abstract: Human campylobacteriosis, caused by Campylobacter jejuni and C. coli, remains a leading cause of bacterial gastroenteritis in many countries, but the epidemiology of campylobacteriosis outbreaks remains poorly defined, largely due to limitations in the resolution and comparability of isolate characterization methods. Whole-genome sequencing (WGS) data enable the improvement of sequence-based typing approaches, such as multilocus sequence typing (MLST), by substantially increasing the number of loci examined. A core genome MLST (cgMLST) scheme defines a comprehensive set of those loci present in most members of a bacterial group, balancing very high resolution with comparability across the diversity of the group. Here we propose a set of 1,343 loci as a human campylobacteriosis cgMLST scheme (v1.0), the allelic profiles of which can be assigned to core genome sequence types. The 1,343 loci chosen were a subset of the 1,643 loci identified in the reannotation of the genome sequence of C. jejuni isolate NCTC 11168, chosen as being present in >95% of draft genomes of 2,472 representative United Kingdom campylobacteriosis isolates, comprising 2,207 (89.3%) C. jejuni isolates and 265 (10.7%) C. coli isolates. Validation of the cgMLST scheme was undertaken with 1,478 further high-quality draft genomes, containing 150 or fewer contiguous sequences, from disease isolate collections: 99.5% of these isolates contained ≥95% of the 1,343 cgMLST loci. In addition to the rapid and effective high-resolution analysis of large numbers of diverse isolates, the cgMLST scheme enabled the efficient identification of very closely related isolates from a well-defined single-source campylobacteriosis outbreak.

86 citations


Journal ArticleDOI
TL;DR: E. coli O25b:H4-ST131 was confirmed to be the most common clone, which is known for its successful dissemination worldwide, and several successful clones previously described in animals (ST410, ST10) also occurred in the isolate collection.

76 citations


Journal ArticleDOI
TL;DR: MCR-1 was detected yearly in European food-producing animal since 2004 with a high diversity of pulsotypes supporting the dissemination of mcr-1 via plasmids, which was considered as a potential emerging threat to public health.

67 citations


Journal ArticleDOI
TL;DR: BTyper, a computational tool that employs a combination of virulence gene-based typing, multilocus sequence typing (MLST), panC clade typing, and rpoB allelic typing to rapidly classify and assess the virulence potential of any isolate using its nucleotide sequencing data, is developed.
Abstract: The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but it can be particularly challenging due to the high genomic similarity within the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group genome assemblies to (i) identify anthrax-associated genes in non-B. anthracis members of the B. cereus group, and (ii) identify assemblies from B. cereus group strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and pagA were detected in 8 genomes classified by the NCBI as B. cereus that clustered into two distinct groups using k-medoids clustering, while either the B. anthracis poly-γ-d-glutamate capsule biosynthesis genes capABCDE or the hyaluronic acid capsule hasA gene was detected in an additional 16 assemblies classified as either B. cereus or Bacillus thuringiensis isolated from clinical, environmental, and food sources. The emetic toxin genes cesABCD were detected in 24 assemblies belonging to panC clades III and VI that had been isolated from food, clinical, and environmental settings. The command line version of BTyper is available at https://github.com/lmc297/BTyper. In addition, BMiner, a companion application for analyzing multiple BTyper output files in aggregate, can be found at https://github.com/lmc297/BMiner. IMPORTANCE Bacillus cereus is a foodborne pathogen that is estimated to cause tens of thousands of illnesses each year in the United States alone. Even with molecular methods, it can be difficult to distinguish nonpathogenic B. cereus group isolates from their pathogenic counterparts, including the human pathogen Bacillus anthracis, which is responsible for anthrax, as well as the insect pathogen B. thuringiensis. By using the variety of typing schemes employed by BTyper, users can rapidly classify, characterize, and assess the virulence potential of any isolate using its nucleotide sequencing data.

64 citations


Journal ArticleDOI
07 Apr 2017-PLOS ONE
TL;DR: This study confirms whole-genome based SNP-analysis as a powerful tool for accurate typing of B. melitensis strains isolated from human cases in Germany and adds an important method to complement epidemiological surveys during outbreak investigations.
Abstract: Brucellosis, a worldwide common bacterial zoonotic disease, has become quite rare in Northern and Western Europe. However, since 2014 a significant increase of imported infections caused by Brucella (B.) melitensis has been noticed in Germany. Patients predominantly originated from Middle East including Turkey and Syria. These circumstances afforded an opportunity to gain insights into the population structure of Brucella strains. Brucella-isolates from 57 patients were recovered between January 2014 and June 2016 with culture confirmed brucellosis by the National Consultant Laboratory for Brucella. Their whole genome sequences were generated using the Illumina MiSeq platform. A whole genome-based SNP typing assay was developed in order to resolve geographically attributed genetic clusters. Results were compared to MLVA typing results, the current gold-standard of Brucella typing. In addition, sequences were examined for possible genetic variation within target regions of molecular diagnostic assays. Phylogenetic analyses revealed spatial clustering and distinguished strains from different patients in either case, whereas multiple isolates from a single patient or technical replicates showed identical SNP and MLVA profiles. By including WGS data from the NCBI database, five major genotypes were identified. Notably, strains originating from Turkey showed a high diversity and grouped into seven subclusters of genotype II. MLVA analysis congruently clustered all isolates and predominantly matched the East Mediterranean genetic clade. This study confirms whole-genome based SNP-analysis as a powerful tool for accurate typing of B. melitensis. Furthermore it allows special allocation and therefore provides useful information on the geographic origin for trace-back analysis. However, the lack of reliable metadata in public databases often prevents a resolution below geographic regions or country levels and corresponding precise trace-back analysis. Once this obstacle is resolved, WGS-derived bacterial typing adds an important method to complement epidemiological surveys during outbreak investigations. This is the first report of a detailed genetic investigation of an extensive collection of B. melitensis strains isolated from human cases in Germany.

61 citations


Journal ArticleDOI
TL;DR: High concordance is revealed between wg MLST, cgMLST, and SNP approaches which are all suitable for typing of L. monocytogenes.
Abstract: Background/ objectives: Whole genome sequencing (WGS) has proven to be a powerful subtyping tool for foodborne pathogenic bacteria like L. monocytogenes. The interests of genome-scale analysis for national surveillance, outbreak detection or source tracking has been largely documented. The genomic data however can be exploited with many different bioinformatics methods like single nucleotide polymorphism (SNP), core-genome multi locus sequence typing (cgMLST), whole-genome multi locus sequence typing (wgMLST) or multi locus predicted protein sequence typing (MLPPST) on either core-genome (cgMLPPST) or pan-genome (wgMLPPST). Currently, there are little comparisons studies of these different analytical approaches. Our objective was to assess and compare different genomic methods that can be implemented in order to cluster isolates of L. monocytogenes. Methods: The clustering methods were evaluated on a collection of 207 L. monocytogenes genomes of food origin representative of the genetic diversity of the Anses collection. The trees were then compared using robust statistical analyses. Results: The backward comparability between conventional typing methods and genomic methods revealed a near-perfect concordance. The importance of selecting a proper reference when calling SNPs was highlighted, although distances between strains remained identical. The analysis also revealed that the topology of the phylogenetic trees between wgMLST and cgMLST were remarkably similar. The comparison between SNP and cgMLST or SNP and wgMLST approaches showed that the topologies of phylogenic trees were statistically similar with an almost equivalent clustering. Conclusion: Our study revealed high concordance between wgMLST, cgMLST, and SNP approaches which are all suitable for typing of L. monocytogenes. The comparable clustering is an important observation considering that the two approaches have been variously implemented among reference laboratories.

56 citations


Journal ArticleDOI
TL;DR: An inventory of the extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae isolates responsible for infections in French hospitals and the mechanisms associated with ESBL diffusion suggested the diffusion of low numbers of ESBL-encoding plasmids, especially in K. pneumoniae and E. cloacae.
Abstract: The objective of this study was to perform an inventory of the extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae isolates responsible for infections in French hospitals and to assess the mechanisms associated with ESBL diffusion. A total of 200 nonredundant ESBL-producing Enterobacteriaceae strains isolated from clinical samples were collected during a multicenter study performed in 18 representative French hospitals. Antibiotic resistance genes were identified by PCR and sequencing experiments. The clonal relatedness between isolates was investigated by the use of the DiversiLab system. ESBL-encoding plasmids were compared by PCR-based replicon typing and plasmid multilocus sequence typing. CTX-M-15, CTX-M-1, CTX-M-14, and SHV-12 were the most prevalent ESBLs (8% to 46.5%). The three CTX-M-type EBSLs were significantly observed in Escherichia coli (37.1%, 24.2%, and 21.8%, respectively), and CTX-M-15 was the predominant ESBL in Klebsiella pneumoniae (81.1%). SHV-12 was associated with ESBL-encoding Enterobacter cloacae strains (37.9%). qnrB, aac(6')-Ib-cr, and aac(3)-II genes were the main plasmid-mediated resistance genes, with prevalences ranging between 19.5% and 45% according to the ESBL results. Molecular typing did not identify wide clonal diffusion. Plasmid analysis suggested the diffusion of low numbers of ESBL-encoding plasmids, especially in K. pneumoniae and E. cloacae However, the ESBL-encoding genes were observed in different plasmid replicons according to the bacterial species. The prevalences of ESBL subtypes differ according to the Enterobacteriaceae species. Plasmid spread is a key determinant of this epidemiology, and the link observed between the ESBL-encoding plasmids and the bacterial host explains the differences observed in the Enterobacteriaceae species.

52 citations


Journal ArticleDOI
02 Jun 2017-PLOS ONE
TL;DR: CgMLST analysis resulted in higher resolution epidemiological typing than did multilocus sequence or spa typing, and the two isolates were retroactively epidemiologically linked by medical record review.
Abstract: Staphylococcus aureus is a leading cause of bacteremia in hospitalized patients Whether or not S aureus bacteremia (SAB) is associated with clonality, implicating potential nosocomial transmission, has not, however, been investigated Herein, we examined the epidemiology of SAB using whole genome sequencing (WGS) 152 SAB isolates collected over the course of 2015 at a single large Minnesota medical center were studied Staphylococcus protein A (spa) typing was performed by PCR/Sanger sequencing; multilocus sequence typing (MLST) and core genome MLST (cgMLST) were determined by WGS Forty-eight isolates (32%) were methicillin-resistant S aureus (MRSA) The isolates encompassed 66 spa types, clustered into 11 spa clonal complexes (CCs) and 10 singleton types 88% of 48 MRSA isolates belonged to spa CC-002 or -008 Methicillin-susceptible S aureus (MSSA) isolates were more genotypically diverse, with 61% distributed across four spa CCs (CC-002, CC-012, CC-008 and CC-084) By MLST, there was 31 sequence types (STs), including 18 divided into 6 CCs and 13 singleton STs Amongst MSSA isolates, the common MLST clones were CC5 (23%), CC30 (19%), CC8 (15%) and CC15 (11%) Common MRSA clones were CC5 (67%) and CC8 (25%); there were no MRSA isolates in CC45 or CC30 By cgMLST analysis, there were 9 allelic differences between two isolates, with the remaining 150 isolates differing from each other by over 40 alleles The two isolates were retroactively epidemiologically linked by medical record review Overall, cgMLST analysis resulted in higher resolution epidemiological typing than did multilocus sequence or spa typing

Journal ArticleDOI
TL;DR: The novel cgMLST scheme not only showed higher discriminatory power compared with PFGE and MLST in outbreak investigations but also showed ability to reveal more population structure characteristics than MLST.
Abstract: At present, the most used methods for Klebsiella pneumoniae subtyping are multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). However, the discriminatory power of MLST could not meet the need for distinguishing outbreak and non-outbreak isolates and the PFGE is time-consuming and labor-intensive. A core genome multilocus sequence typing (cgMLST) scheme for whole-genome sequence-based typing of K. pneumoniae was developed for solving the disadvantages of these traditional molecular subtyping methods. Firstly, we used the complete genome of K. pneumoniae strain HKUOPLC as the reference genome and 907 genomes of K. pneumoniae download from NCBI database as original genome dataset to determine cgMLST target genes. A total of 1,143 genes were retained as cgMLST target genes. Secondly, we used 26 K. pneumoniae strains from a nosocomial infection outbreak to evaluate the cgMLST scheme. cgMLST enabled clustering of outbreak strains with <10 alleles difference and unambiguous separation from unrelated outgroup strains. Moreover, cgMLST revealed that there may be several sub-clones of epidemic ST11 clone. In conclusion, the novel cgMLST scheme not only showed higher discriminatory power compared with PFGE and MLST in outbreak investigations but also showed ability to reveal more population structure characteristics than MLST.

Journal Article
TL;DR: The primary IMD age peak was observed in adults aged 45 years or more, whilst secondary disease peaks were observed in those aged less than 5 years, and in adolescents aged 15-19 years.
Abstract: In 2016, there were 243 laboratory-confirmed cases of invasive meningococcal disease analysed by the Australian National Neisseria Network. This number was the highest number of laboratory confirmed cases since 2008. Probable and laboratory confirmed invasive meningococcal disease (IMD) are notifiable in Australia, and there were 252 IMD cases notified to the National Notifiable Diseases Surveillance System in 2016, the highest number reported since 2010. Meningococcal serogrouping was able to be determined for 98% (237/243) of laboratory confirmed IMD cases. Serogroup B infections accounted for 87 cases (37%), the lowest number and proportion reported since inception of the Australian Meningococcal Surveillance Programme (AMSP) in 1997. In contrast, the number and proportion of serogroup W infections (44%, 107 cases) in 2016 was the highest since the AMSP began. In addition, the number and proportion of serogroup Y infections (16%, 40 cases) was also the highest recorded by the AMSP. Molecular typing results were available for 225 of the 243 IMD cases. Of the serogroup W IMD strains that were able to be genotyped, 92% (97/105) have the PorA antigen encoding gene type P1.5,2 and of these, 72% (70/97) were sequence type 11, the same type as the hypervirulent serogroup W strain that has been circulating in the UK and South America since 2009. The primary IMD age peak was observed in adults aged 45 years or more, whilst secondary disease peaks were observed in those aged less than 5 years, and in adolescents aged 15-19 years. Serogroup B infections predominated in the age groups less than 1 year and 20-24 years, whereas serogroup W infections predominated in those aged 45 years or more. For all other age groups, distribution of serogroup B and W infections was roughly equal. Of the IMD isolates tested for antimicrobial susceptibility, 6% (11/189) were resistant to penicillin, and decreased susceptibility to penicillin was observed in a further 90% (170/189) of isolates. One Men W isolate demonstrated an elevated minimum inhibitory concentration (MIC) to ceftriaxone (0.125mg/L), the highest reported in Australia. All isolates tested were susceptible to rifampicin and ciprofloxacin.

Journal ArticleDOI
TL;DR: The strain typing method utilised the amplification of repeat sequences and showed discrimination comparable with a phylogenetic tree, based on genome comparisons, which was suitable for detecting and monitoring the development of L. parabuchneri in raw milk and cheese.

Journal ArticleDOI
TL;DR: Four genotypes were identified by sequencing-based typing including two new genotypes, U4NR8 and SU9R8, whereas enhanced Centers for Disease Control and Prevention typing revealed 7 subtypes.
Abstract: Centers for Disease Control and Prevention and sequencing-based treponeme typing was used to analyze 72 blood samples, collected from human immunodeficiency virus and syphilis co-infected patients during 2014 to 2015 in Antwerp, Belgium. Twenty-nine (40.3%) isolates were polymerase chain reaction positive for Treponema pallidum, and all tested were macrolide-resistant. Four genotypes were identified by sequencing-based typing including two new genotypes, U4NR8 and SU9R8, whereas enhanced Centers for Disease Control and Prevention typing revealed 7 subtypes.

Journal ArticleDOI
TL;DR: In this paper, the coagulase gene was used to study the epidemiology of S. aureus at a university hospital in Hamadān (Iran) and the results showed that the 700-bp and 800-bp amplicons formed two (coa 4a and 4b) and three ( coa 5a, 5b and 5c) patterns following Alu I digestion, respectively.
Abstract: Objectives The coagulase enzyme, encoded by the coa gene, is an important virulence factor of Staphylococcus aureus and can be used for typing of S. aureus isolates. In this study, coa gene typing was used to study the epidemiology of S. aureus at a university hospital in Hamadān (Iran). Methods A total of 200 S. aureus strains were analysed, among which 150 were isolated from clinical samples and 50 were from nasal swab specimens of carriers. Methicillin resistance was confirmed by presence of the mecA gene by PCR. For polymorphism analysis, the coa gene was amplified by PCR and the products were subjected to restriction digestion using the enzyme Alu I. Results Amplification of the coa gene produced five classes of bands based on size, ranging from 300 bp to 800 bp. The 600-bp amplicon included coa 3 genotype predominated in S. aureus isolated from clinical and carrier specimens (150/200; 75.0%). Alu I digestion of the PCR products produced eight distinct restriction fragment length polymorphism (RFLP) patterns, designated coa 1–8. The results showed that the 700-bp and 800-bp amplicons formed two ( coa 4a and 4b) and three ( coa 5a, 5b and 5c) patterns following Alu I digestion, respectively, whereas the 300-, 500- and 600-bp fragments generated unique patterns designated coa 1, coa 2 and coa 3, respectively. Conclusions This study performed coagulase typing, a technique used to determine the molecular epidemiology of S. aureus clinical isolates. coa gene amplification has been considered a simple and accurate method for typing of S. aureus.

Journal ArticleDOI
TL;DR: The results revealed a considerable prevalence of fosA3 gene among CTX-M-producing E. coli with clonal diversity from chickens in China and the transmission of different kinds of plasmids is responsible for the dissemination of fOSA3 in chicken farms in China.
Abstract: The aim of this study was to investigate the prevalence of fosfomycin resistance gene fosA3 and characterize plasmids harboring fosA3 among CTX-M-producing Escherichia coli from chickens in China. A total of 234 CTX-M-producing E. coli isolates collected from chickens from 2014 to 2016 were screened for the presence of plasmid-mediated fosfomycin resistance genes (fosA, fosA3, and fosC2). Clonal relatedness of fosA3-positive isolates was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The genetic environment of fosA3 was analyzed by polymerase chain reaction (PCR) mapping. Plasmids were studied by using conjugation experiments, PCR-based replicon typing and plasmid MLST. Sixty-four (27.4%) fosA3-positive E. coli isolates were identified in this study. The gene blaCTX-M-55 (31/64) was predominant among these strains, followed by blaCTX-M-14 (18/64) and blaCTX-M-65 (14/64). Various PFGE patterns and sequence types (STs) indicated that these isolates were...

Journal ArticleDOI
TL;DR: 124 MSSA strains collected in 2013 from a comprehensive teaching hospital in Chongqing, Southwestern China were subjected to antibiotics susceptibility testing and molecular typing, including multilocus sequence typing, staphylococcal protein A (spa) gene typing, accessory gene regulator (agr) typing, pulsed-field gel electrophoresis (PFGE) typed, Panton–Valentine leukocidin (pvl) gene detection, and antibiotic-resistant gene detection
Abstract: Methicillin-susceptible Staphylococcus aureus (MSSA) accounts for ∼40% of staphylococcal infections in China. However, the molecular characterization of MSSA is not well described. In this study, 124 MSSA strains collected in 2013 from a comprehensive teaching hospital in Chongqing, Southwestern China, were subjected to antibiotics susceptibility testing and molecular typing, including multilocus sequence typing, staphylococcal protein A (spa) gene typing, accessory gene regulator (agr) typing, pulsed-field gel electrophoresis (PFGE) typing, Panton-Valentine leukocidin (pvl) gene detection, and antibiotic-resistant gene detection. MSSA strains exhibited high genetic heterogeneity. A total of 10 PFGE groups, 26 sequence types, and 47 spa types were identified. Type I (62.9%) was the most frequent agr type, followed by type II (15.3%), type IV (11.3%), and type III (10.5%). The prevalence of pvl genes was 27.4% (34/124). Notably, 44.4% (55/124) of MSSA strains were multidrug resistance (MDR), and MDR isolates were mostly resistant to penicillin, erythromycin, and clindamycin. The resistance gene blaZ was present in 84.7% of strains, ermC was present in 85.5% of strains, ermA was present in 28.2% of strains, tetK was present in 16.1% of strains, tetM was present in 6.5% of strains, and aacA-aphD was present in 2.6% of strains. These data demonstrated the high prevalence of MDR MSSA in Chongqing, thereby indicating the need to control MSSA infection.

Journal ArticleDOI
TL;DR: The diversity of the ESBL producing E. coli and also the diversity of ESBL genes and plasmids carrying these genes in China, which poses a threat to public health are highlighted.
Abstract: Backgroud: The emergence and spread of antimicrobial resistance has become a major global public health concern. A component element of this is the spread of the plasmid-encoded extended-spectrum β-lactamase (ESBL) genes, conferring resistance to third-generation cephalosporins. The purpose of this study was to investigate the molecular characteristics of ESBL-encoding genes identified in Escherichia coli cultured from diarrheic patients in China from 2013 to 2014. Methods: A total of 51 Escherichia coli were confirmed as ESBL producers by double-disk synergy testing of 912 Escherichia coli isolates studied. Polymerase chain reaction (PCR) and DNA sequencing were performed to identify the corresponding ESBL genes. Susceptibility testing was tested by the disk diffusion method. Plasmids were typed by PCR-based replicon typing and their sizes were determined by S1-nuclease pulsed-field gel electrophoresis. Multi-locus sequence typing (MLST) and phylogrouping were also performed. Broth mating assays were carried out for all isolates to determine whether the ESBL marker could be transferred by conjugation. Results: Of the 51 ESBL-positive isolates identified, blaCTX-M, blaTEM, blaOXA and blaSHV were detected in 51, 26, 3, 1 of these isolates respectively. Sequencing revealed that 7 blaCTX-M subtypes were detected, with blaCTX-M-14 being the most common, followed by blaCTX-M-79 and blaCTX-M-28. Of the 26 TEM-positive isolates identified, all of these were blaTEM-1 genotypes. All isolates contained one to three large plasmids and ten replicon types were detected. Of these, IncFrep (n = 50), IncK/B (n = 31), IncFIB (n = 26), IncB/O (n = 14), and IncI1-Ir (n = 8) replicon types were the predominating incompatibility groups. Twenty-six isolates demonstrated the ability to transfer their cefotaxime resistance marker at high transfer rates. MLST typing identified 31 STs and phylogenetic grouping showed that twelve of the 51 donor strains belonged to phylogroup B2. Conclusions: This study highlights the diversity of the ESBL producing E. coli and also the diversity of ESBL genes and plasmids carrying these genes in China, which poses a threat to public health.

Journal ArticleDOI
21 Dec 2017-PLOS ONE
TL;DR: It is concluded that the classic serotyping method can be substituted by the multiplex PCR and, when necessary, sequencing of only one or two loci of the MLST scheme is a valuable tool to confirm the results.
Abstract: In this study, different molecular typing tools were applied to characterize 95 Salmonella enterica blood isolates collected between 2008 and 2013 from patients at nine public hospitals in Lima, Peru. Combined results of multiplex PCR serotyping, two- and seven-loci multilocus sequence typing (MLST) schemes, serotyping, IS200 amplification and RAPD fingerprints, showed that these infections were caused by eight different serovars: Enteritidis, Typhimurium, Typhi, Choleraesuis, Dublin, Paratyphi A, Paratyphi B and Infantis. Among these, Enteritidis, Typhimurium and Typhi were the most prevalent, representing 45, 36 and 11% of the isolates, respectively. Most isolates (74%) were not resistant to ten primarily used antimicrobial drugs; however, 37% of the strains showed intermediate susceptibility to ciprofloxacin (ISC). Antimicrobial resistance integrons were carried by one Dublin (dfra1 and aadA1) and two Infantis (aadA1) isolates. The two Infantis isolates were multidrug resistant and harbored a large megaplasmid. Amplification of spvC and spvRA regions showed that all Enteritidis (n = 42), Typhimurium (n = 34), Choleraesuis (n = 3) and Dublin (n = 1) isolates carried the Salmonella virulence plasmid (pSV). We conclude that the classic serotyping method can be substituted by the multiplex PCR and, when necessary, sequencing of only one or two loci of the MLST scheme is a valuable tool to confirm the results. The effectiveness and feasibility of different typing tools is discussed.

Journal ArticleDOI
11 Aug 2017-PLOS ONE
TL;DR: The combined minimum spanning tree analysis demonstrated that, compared to MLVA types discovered all over the world, the Kuwaiti isolates were a distinct group of MLVA-11 andMLVA-16 types in the East Mediterranean Region.
Abstract: Brucellosis is a zoonotic disease of major concern in Kuwait and the Middle East. Human brucellosis can be caused by several Brucella species with varying degree of pathogenesis, and relapses are common after apparently successful therapy. The classical biochemical methods for identification of Brucella are time-consuming, cumbersome, and provide information limited to the species level only. In contrast, molecular methods are rapid and provide differentiation at intra-species level. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-8, MLVA-11 and MLVA-16 were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. 16S rRNA gene sequencing of all isolates showed 90-99% sequence identity with B. melitensis and real-time PCR with genus- and species- specific primers identified all isolates as B. melitensis. The results of ERIC-PCR suggested the existence of 75 ERIC genotypes of B. melitensis with a discriminatory index of 0.997. Cluster classification of these genotypes divided them into two clusters, A and B, diverging at ~25%. The maximum number of genotypes (n = 51) were found in cluster B5. MLVA-8 analysis identified all isolates as B. melitensis, and MLVA-8, MLVA-11 and MLVA-16 typing divided the isolates into 10, 32 and 71 MLVA types, respectively. Furthermore, the combined minimum spanning tree analysis demonstrated that, compared to MLVA types discovered all over the world, the Kuwaiti isolates were a distinct group of MLVA-11 and MLVA-16 types in the East Mediterranean Region.

Journal ArticleDOI
TL;DR: It seems that the combination of these methods have more discriminatory than any method separately and could be effectively applied to rapid detection of the clonal complex (CC) of A. baumannii strains without performing of MLST or PFGE.

Journal ArticleDOI
TL;DR: There is a significant increase of MRSA prevalence between 2007 and 2013, which mainly results from the spread of ST398 clones, and this study highlights the importance of horses as a potential reservoir of important antimicrobial resistance genes.
Abstract: The epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) isolated in horse infections is not well documented, especially in France. The aim of the study was to evaluate the prevalence of MRSA isolates in horse infections from 2007 to 2013 in France and to characterize phenotypically and genotypically this collection. Out of 1393 S. aureus horse isolates, 85 (6.1%) were confirmed to be MRSA. Interestingly, the prevalence of MRSA significantly increased from 2007–2009 to 2010–2013 (0.7 vs. 9.5%, P <0.0001). Resistance to methicillin was due to the presence of the mecA gene in 84 strains (98.8%) while one strain (1.2%) possessed the mecC gene. The vast majority of the strains (83/85, 97.6%) was resistant to at least three different classes of antibiotics. Multi-locus sequence typing (MLST) showed that MRSA strains belonged mainly since not all belong to two sequence types (STs): ST398 (53/85, 62.4%) and ST8 (28/85, 32.9%). It is worth to note that all ST398 MRSA isolates were detected in the period 2010–2013. Other molecular typing methods were also used, such SCC mec analysis, spa typing and rep-PCR (Diversilab, bioMerieux). All these four techniques were in good agreement, with spa typing and rep-PCR being more discriminative than MLST and SCC mec typing. This study is the first epidemiological study in France with extensive characterization of MRSA isolates associated with horse infections in stud farms. It shows that there is a significant increase of MRSA prevalence between 2007 and 2013, which mainly results from the spread of ST398 clones. It also highlights the importance of horses as a potential reservoir of important antimicrobial resistance genes.

Journal ArticleDOI
TL;DR: The results suggest a low discriminatory power of MALDI-TOF MS for clinically relevant MDR K. pneumoniae clones and highlight the need of developing tools for high-resolution typing in this species.
Abstract: The establishment of matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) in routine microbial identification boosted many developments towards high-throughput applications, including bacterial typing. However, results are still controversial for different bacterial species. We aim to evaluate the suitability of MALDI-TOF MS for typing clinically relevant multidrug resistant (MDR) Klebsiella pneumoniae subsp. pneumoniae clones using routine conditions and a previously validated chemometric analysis workflow. Mass spectra of 83 K. pneumoniae clinical isolates representing major human MDR clones [11 sequence types (STs), 22 PFGE-types] recovered in Portugal and Spain during outbreaks and non-outbreak situations (2003-2012) were obtained from cell extracts (CE) and intact cells (IC), and analysed with different chemometric tools. We observed a highly consistent peak pattern among isolates from different clones either with CE or IC, suggesting a high degree of conservation of biomolecules analysed (a large part corresponding to ribosomal proteins). Moreover, the low degree of agreement between MALDI-TOF MS and other methods (from 34.9 % to 43.4 % of correct assignments for CE and from 40.8 % to 70.1 % for IC) corroborates the low discriminatory potential of the technique at infraspecies level. Our results suggest a low discriminatory power of MALDI-TOF MS for clinically relevant MDR K. pneumoniae clones and highlight the need of developing tools for high-resolution typing in this species.

Journal ArticleDOI
TL;DR: The permanent introduction of OXA-23/72 carbapenemase-producing A. baumannii clones into the hospital and the repeated occurrence of one VIM-1-producing P. coli-ST101 clone over a period of more than 1 year is of concern and requires intensified investigations.
Abstract: We characterized 72 isolates with reduced susceptibility to carbapenems (50 Acinetobacter spp., 13 Proteus mirabilis, five Escherichia coli, one Morganella morganii, one Enterobacter cloacae, one Providencia rettgeri, and one Pseudomonas aeruginosa) from a hospital in Sofia, Bulgaria. Different β-lactamase genes were identified by polymerase chain reaction and sequencing. Bacterial strain typing was performed by enzymatic macrorestriction and pulsed-field gel electrophoresis (PFGE) typing as well as multilocus sequence typing for selected isolates. The majority of Acinetobacter baumannii (46/50) and one Acinetobacter pittii isolate harbored carbapenemase genes blaOXA-23 or blaOXA-72; two A. baumannii contained both genes. PFGE typing of all A. baumannii showed the presence of nine different clones belonging to eight sequence types ST350, ST208, ST436, ST437, ST449, ST231, ST502, and ST579. Molecular characterization of the remaining isolates confirmed the presence of one NDM-1-producing E. coli-ST101 clone (five isolates) and one P. mirabilis clone (13 isolates) with VIM-1 and CMY-99. Furthermore, NDM-1 was identified in P. rettgeri and M. morganii and VIM-2 in the P. aeruginosa isolate. The permanent introduction of OXA-23/72 carbapenemase-producing A. baumannii clones into the hospital and the repeated occurrence of one VIM-1-producing P. mirabilis and one NDM-1-producing E. coli-ST101 clone over a period of more than 1 year is of concern and requires intensified investigations.

Journal ArticleDOI
TL;DR: The largest outbreak of LD reported so far in Germany was likely caused by both variants of the single sequence type, which pre-existed in the environmental reservoirs, and cgMLST proved helpful in disentangling the complex genomic epidemiology of the outbreak.
Abstract: Introduction Whole genome sequencing (WGS) is increasingly used in Legionnaires’ disease (LD) outbreak investigations, owing to its higher resolution than sequence-based typing, the gold standard typing method for Legionella pneumophila, in the analysis of endemic strains. Recently, a gene-by-gene typing approach based on 1,521 core genes called core genome multilocus sequence typing (cgMLST) was described that enables a robust and standardised typing of L. pneumophila. Methods: We applied this cgMLST scheme to isolates obtained during the largest outbreak of LD reported so far in Germany. In this outbreak, the epidemic clone ST345 had been isolated from patients and four different environmental sources. In total 42 clinical and environmental isolates were retrospectively typed. Results: Epidemiologically unrelated ST345 isolates were clearly distinguishable from the epidemic clone. Remarkably, epidemic isolates split up into two distinct clusters, ST345-A and ST345-B, each respectively containing a mix of clinical and epidemiologically-related environmental samples. Discussion/conclusion: The outbreak was therefore likely caused by both variants of the single sequence type, which pre-existed in the environmental reservoirs. The two clusters differed by 40 alleles located in two neighbouring genomic regions of ca 42 and 26 kb. Additional analysis supported horizontal gene transfer of the two regions as responsible for the difference between the variants. Both regions comprise virulence genes and have previously been reported to be involved in recombination events. This corroborates the notion that genomic outbreak investigations should always take epidemiological information into consideration when making inferences. Overall, cgMLST proved helpful in disentangling the complex genomic epidemiology of the outbreak.

Journal ArticleDOI
TL;DR: C. canimorsus was recently shown to be endowed with a capsular polysaccharide implicated in resistance to the innate immune system of the host and capsular serotyping would allow identification of virulent isolates in dogs, which could contribute to the prevention of these infections.
Abstract: Capnocytophaga canimorsus is a dog oral commensal that causes rare but severe infections in humans. C. canimorsus was recently shown to be endowed with a capsular polysaccharide implicated in resistance to the innate immune system of the host. Here, we developed the first C. canimorsus capsular serotyping scheme. We describe nine different serovars (A to I), and this serotyping scheme allowed typing of 25/25 isolates from human infections but only 18/52 isolates from dog mouths, indicating that the repertoire of capsules in the species is vast. However, while only three serovars (A, B, and C) covered 88% of the human isolates tested (22/25), they covered only 7.7% of the dog isolates (4/52). Serovars A, B, and C were found 22.9-, 14.6-, and 4.2-fold more often, respectively, among human isolates than among dog isolates, with no geographical bias, implying that isolates endowed with these three capsular types are more virulent for humans than other isolates. Capsular serotyping would thus allow identification of virulent isolates in dogs, which could contribute to the prevention of these infections. To this end, we developed a PCR typing method based on the amplification of specific capsular genes.

Journal ArticleDOI
TL;DR: The high frequency of M. bovis reinforces the impact of the pathogen as a major causal agent of bovine tuberculosis in the study area and the resistance of the strains to drugs used for first-line treatment of human tuberculosis raises public health concerns.

Journal ArticleDOI
TL;DR: High diversity were demonstrated in MDR strains and these were classified into 20 distinct MIRU‐VNTR genotypes and will help the health sectors to construct a preventive program for MDR‐TB.
Abstract: Tuberculosis (TB) is considered as one of the most important infectious diseases in the world, and recent rise and spread of multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains, have made the matter worsened. Due to the importance of TB prevalence in Iran, this study was designed to investigate the genetic diversity among MDR strains of MTB by MIRU-VNTR typing scheme. A total of 88 drug resistant M. tuberculosis isolates belong to pulmonary TB cases were collected from several TB reference centers of Iran. Drug susceptibility testing for Isoniazid and Rifampin was performed using the agar proportion method and MDR isolates were underwent genotyping by using 12-locus- based MIRU-VNTR typing. On performing proportion method, 22 isolates were identified as MDR. By typing of MDR isolates using 12-loci MIRU-VNTR technique, high diversity were demonstrated in MDR strains and these were classified into 20 distinct MIRU-VNTR genotypes. MIRU loci 10 and 26 were the most discriminatory loci with 8 and 7 alleles respectively; while MIRU loci 2, 20, 24 and 39 were found to be the least discriminatory with 1–2 alleles each. We noticed a mixed infection in isolate 53, as this isolate comprised simultaneous two alleles in MIRU loci 40, 10, 16 and 39. In conclusion, this result represents MIRU-VNTR typing as a useful tool for studying genetic diversity of MDR-MTB in regional settings, and will help the health sectors to construct a preventive program for MDR-TB. Additionally, it can detect mixed infection which can facilitate management of treatment.

Journal ArticleDOI
TL;DR: This study determined the efficacy of high-throughput CRISPR typing over conventional phage typing in epidemiological surveillance and outbreak investigation of S. Typhimurium and revealed the presence of different CRISpr type among strains belong to the same phage type.
Abstract: Salmonella Typhimurium is the most dominant Salmonella serovar around the world. It is associated with foodborne gastroenteritis outbreaks but has recently been associated with invasive illness and deaths. Characterization of S. Typhimurium is therefore very crucial for epidemiological surveillance. Phage typing has been used for decades for subtyping of S. Typhimurium to determine the epidemiological relation among isolates. Recent studies however have suggested that high throughput clustered regular interspaced short palindromic repeats (CRISPR) typing has the potential to replace phage typing. This study aimed to determine the efficacy of high-throughput CRISPR typing over conventional phage typing in epidemiological surveillance and outbreak investigation of S. Typhimurium. In silico analysis of whole genome sequences (WGS) of well-documented phage types of S. Typhimurium reveals the presence of different CRISPR type among strains belong to the same phage type. Furthermore, different phage types of S. Typhimurium share identical CRISPR type. Interestingly, identical spacers were detected among outbreak and non-outbreak associated DT8 strains of S. Typhimurium. Therefore, CRISPR typing is not useful for the epidemiological surveillance and outbreak investigation of S. Typhimurium and phage typing, until it is replaced by WGS, is still the gold standard method for epidemiological surveillance of S. Typhimurium.