scispace - formally typeset
Search or ask a question
Topic

Typing

About: Typing is a research topic. Over the lifetime, 5010 publications have been published within this topic receiving 146539 citations.


Papers
More filters
Journal ArticleDOI
04 Feb 2014-PLOS ONE
TL;DR: For S. Typhimurium, SNP analysis and nucleotide difference approach of WGS data seem to be the superior methods for epidemiological typing compared to other phylogenetic analytic approaches that may be used on WGS.
Abstract: Salmonella enterica is a common cause of minor and large food borne outbreaks. To achieve successful and nearly ‘real-time’ monitoring and identification of outbreaks, reliable sub-typing is essential. Whole genome sequencing (WGS) shows great promises for using as a routine epidemiological typing tool. Here we evaluate WGS for typing of S. Typhimurium including different approaches for analyzing and comparing the data. A collection of 34 S. Typhimurium isolates was sequenced. This consisted of 18 isolates from six outbreaks and 16 epidemiologically unrelated background strains. In addition, 8 S. Enteritidis and 5 S. Derby were also sequenced and used for comparison. A number of different bioinformatics approaches were applied on the data; including pan-genome tree, k-mer tree, nucleotide difference tree and SNP tree. The outcome of each approach was evaluated in relation to the association of the isolates to specific outbreaks. The pan-genome tree clustered 65% of the S. Typhimurium isolates according to the pre-defined epidemiology, the k-mer tree 88%, the nucleotide difference tree 100% and the SNP tree 100% of the strains within S. Typhimurium. The resulting outcome of the four phylogenetic analyses were also compared to PFGE reveling that WGS typing achieved the greater performance than the traditional method. In conclusion, for S. Typhimurium, SNP analysis and nucleotide difference approach of WGS data seem to be the superior methods for epidemiological typing compared to other phylogenetic analytic approaches that may be used on WGS. These approaches were also superior to the more classical typing method, PFGE. Our study also indicates that WGS alone is insufficient to determine whether strains are related or un-related to outbreaks. This still requires the combination of epidemiological data and whole genome sequencing results.

214 citations

Journal ArticleDOI
TL;DR: DNA sequence-based typing of the Staphylococcus aureus protein A gene showed 100% intra- and interlaboratory reproducibility without extensive harmonization of protocols for 30 blind-coded S. aureUS DNA samples sent to 10 laboratories.
Abstract: Current DNA amplification-based typing methods for bacterial pathogens often lack interlaboratory reproducibility. In this international study, DNA sequence-based typing of the Staphylococcus aureus protein A gene (spa, 110 to 422 bp) showed 100% intra- and interlaboratory reproducibility without extensive harmonization of protocols for 30 blind-coded S. aureus DNA samples sent to 10 laboratories. Specialized software for automated sequence analysis ensured a common typing nomenclature.

213 citations

Journal ArticleDOI
TL;DR: RAPD typing is far more sensitive than MLEE typing for discriminating among related strains of a species, and should be used for studies of bacterial population genetic structure and evolution, as well as for epidemiology.
Abstract: The RAPD (random amplified polymorphic DNA) fingerprinting method, which utilizes low stringency PCR amplification with single primers of arbitrary sequence to generate strain-specific arrays of anonymous DNA fragments, was calibrated relative to the widely used, protein-based multilocus enzyme electrophoretic (MLEE) typing method. RAPD fingerprinting was carried out on five isolates from each of 15 major groups of Escherichia coli strains that cause diarrheal disease worldwide (75 isolates in all). Each group consisted of isolates that were not distinguishable from one another by MLEE typing using 20 diagnostic enzyme markers. In our RAPD tests, three or more distinct subgroups in each MLEE group were distinguished with each of five primers, and 74 of the 75 isolates were distinguished when data obtained with five primers were combined. Thus, RAPD typing is far more sensitive than MLEE typing for discriminating among related strains of a species. Despite their different sensitivities, the same general relationships among strains were inferred from MLEE and RAPD data. Thus, our results recommend use of the RAPD method for studies of bacterial population genetic structure and evolution, as well as for epidemiology.

212 citations

Journal ArticleDOI
TL;DR: Despite the high frequency of single- and zero-band isolates in this population, the discriminatory power of RFLP typing with IS6110 is sufficiently high to be useful for clinical and epidemiological studies.

210 citations

Journal ArticleDOI
TL;DR: A rapid DNA fingerprinting method that exploits PCR amplification from a DNA repeat sequence in MRSA is described and two PCR fingerprinting methods which use an oligonucleotide primer based on a repetitive sequence found in Mycoplasma pneumoniae are presented.
Abstract: Methicillin resistance in Staphylococcus aureus is a frequent cause of nosocomial and community-acquired infections. Accurate, rapid epidemiologic typing is crucial to the identification of the source and spread of infectious disease and could provide detailed information on the generation of methicillin-resistant S. aureus (MRSA) strains. The high degree of genetic relatedness of MRSA strains has precluded the use of more conventional methods of genetic fingerprinting. A rapid DNA fingerprinting method that exploits PCR amplification from a DNA repeat sequence in MRSA is described. The random chromosomal distribution of this repeat sequence provides an ideal target for detecting DNA fragment patterns specific to individual MRSA strains. Two PCR fingerprinting methods which use an oligonucleotide primer based on a repetitive sequence found in Mycoplasma pneumoniae are presented. The repetitive element sequence-based PCR (rep-PCR) and fluorophore-enhanced rep-PCR (FERP) can identify epidemic strains among background MRSA. The combination of oligonucleotide primers labeled with different fluorescent dyes allowed simultaneous FERP fingerprinting and mecA gene detection. Eight different fingerprint patterns were observed in MRSA strains collected from different sources. These techniques provide a rapid discriminatory means of molecular epidemiologic typing of MRSA involved in nosocomial infections.

210 citations


Network Information
Related Topics (5)
Antibody
113.9K papers, 4.1M citations
81% related
Antigen
170.2K papers, 6.9M citations
80% related
Virulence
35.9K papers, 1.3M citations
80% related
Virus
136.9K papers, 5.2M citations
78% related
Plasmid
44.3K papers, 1.9M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023329
2022690
2021145
2020126
2019136
2018147