scispace - formally typeset
Search or ask a question

Showing papers on "Tyrosine-kinase inhibitor published in 2013"


Journal ArticleDOI
TL;DR: Cabozantinib (140 mg per day) achieved a statistically significant improvement of PFS in patients with progressive metastatic MTC and represents an important new treatment option for patients with this rare disease.
Abstract: Purpose Cabozantinib, a tyrosine kinase inhibitor (TKI) of hepatocyte growth factor receptor (MET), vascular endothelial growth factor receptor 2, and rearranged during transfection (RET), demonstrated clinical activity in patients with medullary thyroid cancer (MTC) in phase I. Patients and Methods We conducted a double-blind, phase III trial comparing cabozantinib with placebo in 330 patients with documented radiographic progression of metastatic MTC. Patients were randomly assigned (2:1) to cabozantinib (140 mg per day) or placebo. The primary end point was progression-free survival (PFS). Additional outcome measures included tumor response rate, overall survival, and safety. Results The estimated median PFS was 11.2 months for cabozantinib versus 4.0 months for placebo (hazard ratio, 0.28; 95% CI, 0.19 to 0.40; P < .001). Prolonged PFS with cabozantinib was observed across all subgroups including by age, prior TKI treatment, and RET mutation status (hereditary or sporadic). Response rate was 28% for c...

931 citations


Journal ArticleDOI
TL;DR: The current understanding of ALK function in human cancer and the implications for tumour treatment are discussed.
Abstract: The burgeoning field of anaplastic lymphoma kinase (ALK) in cancer encompasses many cancer types, from very rare cancers to the more prevalent non-small-cell lung cancer (NSCLC). The common activation of ALK has led to the use of the ALK tyrosine kinase inhibitor (TKI) crizotinib in a range of patient populations and to the rapid development of second-generation drugs targeting ALK. In this Review, we discuss our current understanding of ALK function in human cancer and the implications for tumour treatment.

508 citations


01 Aug 2013
TL;DR: It is shown here that IM induces autophagy in CML blast crisis cell lines, CML primary cells, and p210BCR/ABL-expressing myeloid precursor cells and the combination of a tyrosine kinase inhibitor (TKI), i.e., IM, nilotinib, or dasatinib, with inhibitors of Autophagy resulted in near complete elimination of phenotypically and functionally defined CML stem cells.

474 citations


Journal ArticleDOI
TL;DR: It is found that the EGFR/SFK pathway mediated resistance to vemurafenib in BRAF -mutant melanoma and that BRAF and EGFR or SFK inhibition blocked proliferation and invasion of these resistant tumors, providing potentially effective therapeutic options for these patients.
Abstract: We generated cell lines resistant to BRAF inhibitors and show that the EGF receptor (EGFR)–SRC family kinase (SFK)–STAT3 signaling pathway was upregulated in these cells. In addition to driving proliferation of resistant cells, this pathway also stimulated invasion and metastasis. EGFR inhibitors cooperated with BRAF inhibitors to block the growth of the resistant cells in vitro and in vivo , and monotherapy with the broad specificity tyrosine kinase inhibitor dasatinib blocked growth and metastasis in vivo . We analyzed tumors from patients with intrinsic or acquired resistance to vemurafenib and observed increased EGFR and SFK activity. Furthermore, dasatinib blocked the growth and metastasis of one of the resistant tumors in immunocompromised mice. Our data show that BRAF inhibitor-mediated activation of EGFR–SFK–STAT3 signaling can mediate resistance in patients with BRAF-mutant melanoma. We describe 2 treatments that seem to overcome this resistance and could deliver therapeutic efficacy in patients with drug-resistant BRAF-mutant melanoma. Significance: Therapies that target the driver oncogenes in cancer can achieve remarkable responses if patients are stratified for treatment. However, as with conventional therapies, patients often develop acquired resistance to targeted therapies, and a proportion of patients are intrinsically resistant and fail to respond despite the presence of an appropriate driver oncogene mutation. We found that the EGFR/SFK pathway mediated resistance to vemurafenib in BRAF -mutant melanoma and that BRAF and EGFR or SFK inhibition blocked proliferation and invasion of these resistant tumors, providing potentially effective therapeutic options for these patients. Cancer Discov; 3(2); 158–67. ©2012 AACR . This article is highlighted in the In This Issue feature, [p. 125][1] [1]: /lookup/volpage/3/125?iss=2

313 citations


Journal ArticleDOI
TL;DR: The manner of EGFR-TKI exposure influences the mechanism of acquired resistance and the appearance of stem cell-like property with EGFR -TKI treatment, which is indicated to be a critical problem in the treatment of lung cancer.
Abstract: Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitor (TKI) is a critical problem in the treatment of lung cancer. Although several mechanisms have been shown to be responsible for acquired resistance, all mechanisms have not been uncovered. In this study, we investigated the molecular and cellular profiles of the acquired resistant cells to EGFR-TKI in EGFR-mutant lung cancers. Four EGFR-mutant cell lines were exposed to gefitinib by stepwise escalation and high-concentration exposure methods, and resistant sublines to gefitinib were established. The molecular profiles and cellular phenotypes of these resistant sublines were characterized. Although previously reported, alterations including secondary EGFR T790M mutation, MET amplification, and appearance of epithelial-to-mesenchymal transition (EMT) features were observed, these 2 drug-exposure methods revealed different resistance mechanisms. The resistant cells with EMT features exhibited downregulation of miRNA-200c by DNA methylation. Furthermore, the HCC827-derived subline characterized by the high-concentration exposure method exhibited not only EMT features but also stem cell-like properties, including aldehyde dehydrogenase isoform 1 (ALDH1A1) overexpression, increase of side-population, and self-renewal capability. Resistant sublines with stem cell-like properties were resistant to conventional chemotherapeutic agents but equally sensitive to histone deacetylase and proteasome inhibitors, compared with their parental cells. ALDH1A1 was upregulated in clinical samples with acquired resistance to gefitinib. In conclusion, our study indicates that the manner of EGFR-TKI exposure influences the mechanism of acquired resistance and the appearance of stem cell-like property with EGFR-TKI treatment.

243 citations


Journal ArticleDOI
TL;DR: Alternative molecular mechanisms for GIST pathogenesis are related to deficiencies in the succinate dehydrogenase complex, NF1-gene alterations in connection with neurofibromatosis type 1 tumor syndrome, and mutational activation of the BRAF oncogene in very rare cases.

204 citations


Journal ArticleDOI
TL;DR: A child with EBF1PDGFRB–positive ALL is presented whose disease was refractory to conventional induction chemotherapy but who responded to the addition of imatinib to remission induction therapy, highlighting the potential for TKI therapy to improve the currently poor outcome of patients with BCR-ABL1–like ALL harboring kinase-activating alterations.
Abstract: Introduction Although more than 80% of children who are diagnosed with acute lymphoblastic leukemia (ALL) experience favorable clinical outcomes, a substantial number of children have high-risk disease with an increased probability of relapse and poor prognosis. Genetic alterations, including chromosomal rearrangements and deletions, are important determinants of leukemogenesis and responsiveness to therapy. The ability to identify high-risk patients at the time of diagnosis would enable clinicians to select more targeted therapies and improve survival. For example, patients with BCR-ABL1–positive ALL generally respond poorly to conventional chemotherapy, but outcomes can be improved with the addition of firstand second-generation tyrosine kinase inhibitors (TKIs). Recent genomic analyses have identified a new high-risk subtype of BCR-ABL1–negative ALL with a gene expression profile that is similar to that of BCR-ABL1–positive ALL, deletion of IKZF1 and/or other lymphoid transcriptional regulators, and poor outcome (BCRABL1–like ALL). Approximately 40% of patients with BCR-ABL1– like disease harbor rearrangements that result in aberrant expression of cytokine receptor–like factor 2, and half of these patients also demonstrate activating Janus kinase (JAK1/2) mutations. Recent transcriptome and whole-genome sequencing of BCR-ABL1–like ALL identified a range of genetic alterations that activate kinase signaling, including a recurrent fusion of the B-cell lymphoid transcription factor early B-cell factor 1 to the receptor tyrosine kinase plateletderived growth factor receptor (PDGFRB) on chromosome 5q. It is predicted that the DNA dimerization domain of EBF1 facilitates autophosphorylation and constitutive activation of PDGFRB. The potential for treatment of EBF1-PDGFRB–positive leukemia has not been directly examined in vivo. Here we present a child with EBF1PDGFRB–positive ALL whose disease was refractory to conventional induction chemotherapy but who responded to the addition of imatinib to remission induction therapy, highlighting the potential for TKI therapy to improve the currently poor outcome of patients with BCR-ABL1–like ALL harboring kinase-activating alterations.

188 citations


Journal ArticleDOI
TL;DR: Evidence is emerging for identification of aberrant MET activity biomarkers and selection of patient subpopulations that may benefit from targeted MET and HGF inhibitor treatment.

188 citations


Journal ArticleDOI
TL;DR: The oncogenic nature of mutations observed in FGFR2 and FGFR3, each of which are observed in 3% of samples, are described, for a mutation rate of 6% across both genes.
Abstract: A comprehensive description of genomic alterations in lung squamous cell carcinoma (lung SCC) has recently been reported, enabling the identification of genomic events that contribute to the oncogenesis of this disease. In lung SCC, one of the most frequently altered receptor tyrosine kinase families is the fibroblast growth factor receptor (FGFR) family, with amplification or mutation observed in all four family members. Here, we describe the oncogenic nature of mutations observed in FGFR2 and FGFR3, each of which are observed in 3% of samples, for a mutation rate of 6% across both genes. Using cell culture and xenograft models, we show that several of these mutations drive cellular transformation. Transformation can be reversed by small-molecule FGFR inhibitors currently being developed for clinical use. We also show that mutations in the extracellular domains of FGFR2 lead to constitutive FGFR dimerization. In addition, we report a patient with an FGFR2-mutated oral SCC who responded to the multitargeted tyrosine kinase inhibitor pazopanib. These findings provide new insights into driving oncogenic events in a subset of lung squamous cancers, and recommend future clinical studies with FGFR inhibitors in patients with lung and head and neck SCC.

158 citations


Journal ArticleDOI
TL;DR: Reporting of the genotype-response pattern of NSCLCs with EGFR compound and other rare mutations, and the addition of this information to searchable databases, will be helpful to select the appropriate therapy for EGFR-mutated NSCLC.

156 citations


Journal ArticleDOI
29 Aug 2013-Blood
TL;DR: The high degree of complexity uncovered by UDS indicates that conventional Sanger sequencing might be an inadequate tool to assess BCR-ABL kinase domain mutation status, which currently represents an important component of the therapeutic decision algorithms.

Journal ArticleDOI
TL;DR: The advent of tyrosine kinase inhibitors (TKI) has profoundly changed the current therapeutic approach in some hematologic malignancies, including BCR-ABL1 -positive acute lymphoblastic leukemia (ALL).
Abstract: The advent of tyrosine kinase inhibitors (TKI) has profoundly changed the current therapeutic approach in some hematologic malignancies, including BCR-ABL1 -positive acute lymphoblastic leukemia (ALL). Recently, next-generation genomic methods have uncovered various alterations in ALL that lead to

Journal ArticleDOI
TL;DR: It is demonstrated that MERTK expression correlates with disease progression and is established as a therapeutic target in melanoma and provides a rationale for the continued development of MertK-targeted therapies.
Abstract: Metastatic melanoma is one of the most aggressive forms of cutaneous cancers. Although recent therapeutic advances have prolonged patient survival, the prognosis remains dismal. C-MER proto-oncogene tyrosine kinase (MERTK) is a receptor tyrosine kinase with oncogenic properties that is often overexpressed or activated in various malignancies. Using both protein immunohistochemistry and microarray analyses, we demonstrate that MERTK expression correlates with disease progression. MERTK expression was highest in metastatic melanomas, followed by primary melanomas, while the lowest expression was observed in nevi. Additionally, over half of melanoma cell lines overexpressed MERTK compared with normal human melanocytes; however, overexpression did not correlate with mutations in BRAF or RAS. Stimulation of melanoma cells with the MERTK ligand GAS6 resulted in the activation of several downstream signaling pathways including MAPK/ERK, PI3K/AKT, and JAK/STAT. MERTK inhibition via shRNA reduced MERTK-mediated downstream signaling, reduced colony formation by up to 59%, and diminished tumor volume by 60% in a human melanoma murine xenograft model. Treatment of melanoma cells with UNC1062, a novel MERTK-selective small-molecule tyrosine kinase inhibitor, reduced activation of MERTK-mediated downstream signaling, induced apoptosis in culture, reduced colony formation in soft agar, and inhibited invasion of melanoma cells. This work establishes MERTK as a therapeutic target in melanoma and provides a rationale for the continued development of MERTK-targeted therapies.

Journal ArticleDOI
TL;DR: The current scientific rationale for trastuzumab and lapatinib and how combinations of these agents may yield additive or synergistic effects and lead to improved outcomes for patients with HER2-amplified breast cancer are reviewed.

Journal ArticleDOI
TL;DR: The ability to overcome EGFR-mediated acquired therapeutic resistance to lapatinib was demonstrated through molecular knockdown of EGFR and treatment with the irreversible pan-HER TKI neratinib, which blocked HRG-dependent phosphorylation of HER3 and EGFR, resulting in apoptosis of resistant cells.
Abstract: The human epidermal growth factor receptor 2 (HER2) receptor tyrosine kinase (RTK) oncogene is an attractive therapeutic target for the treatment of HER2-addicted tumors. Although lapatinib, an FDA-approved small-molecule HER2 and epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), represents a significant therapeutic advancement in the treatment of HER2+ breast cancers, responses to lapatinib have not been durable. Consequently, elucidation of mechanisms of acquired therapeutic resistance to HER-directed therapies is of critical importance. Using a functional protein-pathway activation mapping strategy, along with targeted genomic knockdowns applied to a series of isogenic-matched pairs of lapatinib-sensitive and resistant cell lines, we now report an unexpected mechanism of acquired resistance to lapatinib and similar TKIs. The signaling analysis revealed that whereas HER2 was appropriately inhibited in lapatinib-resistant cells, EGFR tyrosine phosphorylation was incompletely inhibited. Using a targeted molecular knockdown approach to interrogate the causal molecular underpinnings of EGFR-persistent activation, we found that lapatinib-resistant cells were no longer oncogene addicted to HER2-HER3-PI3K signaling, as seen in the parental lapatinib-sensitive cell lines, but instead were dependent on a heregulin (HRG)-driven HER3-EGFR-PI3K-PDK1 signaling axis. Two FDA-approved EGFR TKIs could not overcome HRG-HER3-mediated activation of EGFR, or reverse lapatinib resistance. The ability to overcome EGFR-mediated acquired therapeutic resistance to lapatinib was demonstrated through molecular knockdown of EGFR and treatment with the irreversible pan-HER TKI neratinib, which blocked HRG-dependent phosphorylation of HER3 and EGFR, resulting in apoptosis of resistant cells. In addition, whereas HRG reversed lapatinib-mediated antitumor effects in parental HER2+ breast cancer cells, neratinib was comparatively resistant to the effects of HRG in parental cells. Finally, we showed that HRG expression is an independent negative predictor of clinical outcome in HER2+ breast cancers, providing potential clinical relevance to our findings. Molecular analysis of acquired therapeutic resistance to lapatinib identified a new resistance mechanism based on incomplete and "leaky" inhibition of EGFR by lapatinib. The selective pressure applied by incomplete inhibition of the EGFR drug target resulted in selection of ligand-driven feedback that sustained EGFR activation in the face of constant exposure to the drug. Inadequate target inhibition driven by a ligand-mediated autocrine feedback loop may represent a broader mechanism of therapeutic resistance to HER TKIs and suggests adopting a different strategy for selecting more effective TKIs to advance into the clinic.

Journal ArticleDOI
TL;DR: It is suggested that ALDH1A1 positivity in cancer stem cells confers resistance to EGFR TKI in lung cancer.

Journal ArticleDOI
18 Apr 2013-Blood
TL;DR: In vitro activity of ponatinib against clinically relevant FLT3-ITD mutant isoforms that confer resistance to AC220 or sorafenib was assessed, and substitution of theFLT3 "gatekeeper" phenylalanine with leucine withLeucine conferred mild resistance to p onatinib, but substitutions at the FLT 3 activation loop (AL) residue D835 conferred a high degree of resistance.

Journal ArticleDOI
13 Jun 2013-Blood
TL;DR: Early responses to tyrosine kinase inhibitors in chronic myeloid leukemia (CML) are predictive for EFS and failure-free survival and to a lesser extent OS, regardless of the treatment modality, although therapies other than standard-dose imatinib result in higher rates of deep early responses.

Journal ArticleDOI
TL;DR: The mechanisms of resistance, recommendations for monitoring, assessment of milestones, and management options for patients with CML who are resistant to imatinib therapy are reviewed.
Abstract: Since its approval in 2001 for frontline management of chronic myelogenous leukemia (CML), imatinib has proven to be very effective in achieving high remission rates and improving prognosis. However, up to 33% of patients will not achieve optimal response. This has led researchers to develop new second- and third-generation tyrosine kinase inhibitors. In this article, we review the mechanisms of resistance, recommendations for monitoring, assessment of milestones, and management options for patients with CML who are resistant to imatinib therapy. We further explain the potential pitfalls that can lead to unnecessary discontinuation, the prognosis of patients whose condition fails to respond to treatment, and the upcoming therapies.

Journal ArticleDOI
03 Jan 2013-Oncogene
TL;DR: Structural analyses provide a structural basis for the altered drug sensitivities caused by distinct NSCLC-associated EGFR mutations and support the hypothesis that the expansion of the active-site cleft results in enhanced gefitinib sensitivity.
Abstract: The epidermal growth factor receptor (EGFR) has an essential role in multiple signaling pathways, including cell proliferation and migration, through extracellular ligand binding and subsequent activation of its intracellular tyrosine kinase (TK) domain. The non-small cell lung cancer (NSCLC)-associated EGFR mutants, L858R and G719S, are constitutively active and oncogenic. They display sensitivity to TK inhibitors, including gefitinib and erlotinib. In contrast, the secondary mutation of the gatekeeper residue, T790M, reportedly confers inhibitor resistance on the oncogenic EGFR mutants. In this study, our biochemical analyses revealed that the introduction of the T790M mutation confers gefitinib resistance on the G719S mutant. The G719S/T790M double mutant has enhanced activity and retains high gefitinib-binding affinity. The T790M mutation increases the ATP affinity of the G719S mutant, explaining the acquired drug resistance of the double mutant. Structural analyses of the G719S/T790M double mutant, as well as the wild type and the G719S and L858R mutants, revealed that the T790M mutation stabilizes the hydrophobic spine of the active EGFR-TK conformation. The Met790 side chain of the G719S/T790M double mutant, in the apo form and gefitinib- and AMPPNP-bound forms, adopts different conformations that explain the accommodation of these ligands. In the L858R mutant structure, the active-site cleft is expanded by the repositioning of Phe723 within the P-loop. Notably, the introduction of the F723A mutation greatly enhanced the gefitinib sensitivity of the wild-type EGFR in vivo, supporting our hypothesis that the expansion of the active-site cleft results in enhanced gefitinib sensitivity. Taken together, our results provide a structural basis for the altered drug sensitivities caused by distinct NSCLC-associated EGFR mutations.

Journal ArticleDOI
TL;DR: Quizartinib is a potent second-generation class III receptor TK-inhibitor – but specific, mutation restricted spectrum of activity may require mutation screening prior to therapy.
Abstract: Activating mutations of class III receptor tyrosine kinases (RTK) FLT3, PDGFR and KIT are associated with multiple human neoplasms including hematologic malignancies, for example: systemic mast cell disorders (KIT), non-CML myeloproliferative neoplasms (PDGFR) and subsets of acute leukemias (FLT3 and KIT). First generation tyrosine kinase inhibitors (TKI) are rapidly being integrated into routine cancer care. However, the expanding spectrum of TK-mutations, bioavailability issues and the emerging problem of primary or secondary TKI-therapy resistance have lead to the search for novel second generation TKIs to improve target potency and to overcome resistant clones. Quizartinib was recently demonstrated to be a selective FLT3 inhibitor with excellent pharmacokinetics and promising in vivo activity in a phase II study for FLT3 ITD + AML patients. In vitro kinase assays have suggested that in addition to FLT3, quizartinib also targets related class III RTK isoforms. Various FLT3 or KIT leukemia cell lines and native blasts were used to determine the antiproliferative and proapoptotic efficacy of quizartinib. To better compare differences between the mutant kinase isoforms, we generated an isogenic BaF3 cell line expressing different FLT3, KIT or BCR/ABL isoforms. Using immunoblotting, we examined the effects of quizartinib on activation of mutant KIT or FLT3 isoforms. Kinase inhibition of (mutant) KIT, PDGFR and FLT3 isoforms by quizartinib leads to potent inhibition of cellular proliferation and induction of apoptosis in in vitro leukemia models as well as in native leukemia blasts treated ex vivo. However, the sensitivity patterns vary widely depending on the underlying (mutant)-kinase isoform, with some isoforms being relatively insensitive to this agent (e.g. FLT3 D835V and KIT codon D816 mutations). Evaluation of sensitivities in an isogenic cellular background confirms a direct association with the underlying mutant-TK isoform – which is further validated by immunoblotting experiments demonstrating kinase inhibition consistent with the cellular sensitivity/resistance to quizartinib. Quizartinib is a potent second-generation class III receptor TK-inhibitor – but specific, mutation restricted spectrum of activity may require mutation screening prior to therapy.

Journal ArticleDOI
TL;DR: The results point to an important contribution toward enhancing T‐cell and IFN‐γ‐based immunity by lapatinib as well as doxorubicin and emphasize the role of Stat1 in building an effective antitumor immune response.
Abstract: The dual erbB1/2 tyrosine kinase inhibitor lapatinib as well as the anthracycline doxorubicin are both used in the therapy of HER2-positive breast cancer. Using MMTV-neu mice as an animal model for HER2-positive breast cancer, we observed enhanced tumor infiltration by IFN-γ-secreting T cells after treatment with doxorubicin and/or lapatinib. Antibody depletion experiments revealed a contribution of CD8+ but not CD4+ T cells to the antitumor effect of these drugs. Doxorubicin treatment additionally decreased the content of immunosuppressive tumor-associated macrophages (TAMs) in the tumor bed. In contrast, Stat1-deficient mice were resistant to tumor growth inhibition by lapatinib and/or doxorubicin and exhibited impaired T-cell activation and reduced T-cell infiltration of the tumor in response to drug treatment. Furthermore, Stat1-deficiency resulted in reduced expression of the T-cell chemotactic factors CXCL9, CXCL10, and CXCL11 in the tumor epithelium. The inhibition of TAM infiltration of the tumor by doxorubicin and the immunosuppressive function of TAMs were found to be Stat1 independent. Taken together, the results point to an important contribution toward enhancing T-cell and IFN-γ-based immunity by lapatinib as well as doxorubicin and emphasize the role of Stat1 in building an effective antitumor immune response.

Journal ArticleDOI
Jong-Mu Sun1, Myung-Ju Ahn1, Yoon-La Choi1, Jin Seok Ahn1, Keunchil Park1 
TL;DR: The identification of T790M as acquired resistance mechanism was clinically feasible and further research is necessary to identify patients with T790 M-mutant tumors who might benefit from newly developed T790m-specific TKIs.

Journal ArticleDOI
TL;DR: Nilotinib attenuated tumor growth synergistically and increased paclitaxel concentrations in ABCB1-overexpressing tumors, and warrant consideration as viable combinations in the clinic with agents that suffer from MDR-mediated insensitivity.

Journal ArticleDOI
TL;DR: Erlotinib can induce both apoptosis and autophagy in sensitive NSCLC cell lines with activating EGFR mutation (exon 19 del) and inhibition of autophagic proteins can further enhance sensitivity to erlot inib in EGFR-mutatedNSCLC, suggesting that autophamy may serve as a protective mechanism.

Journal ArticleDOI
TL;DR: Treatment with the dual phosphoinositide-3-kinase (PI3K)/AKT and mTOR inhibitor BEZ235 attenuated PI3K/AKT/mTOR signaling, as well as induced cell-cycle growth arrest and apoptosis of the cultured human JAK2-V617F-expressing HEL92.1.7 (HEL), UKE1 cells, and primary CD34+ myelofibrosis (MF)-MPN cells.
Abstract: Hemopoietic progenitor cells (HPC) from myeloproliferative neoplasms (MPN) such as myelofibrosis commonly express mutant JAK2-V617F or other mutations that are associated with increased activities of JAK-STAT5/3, RAS/RAF/MAPK, and PI3K/AKT/mTOR pathways. This confers proliferative and survival advantage on the MPN HPCs. Treatment with JAK tyrosine kinase inhibitor (TKI), for example, TG101209, TG101348 (SAR302503), or INCB018424 (ruxolitinib), inhibits mutant JAK2-mediated signaling. Although effective in reducing constitutional symptoms and splenomegaly, treatment with JAK-TKI does not ameliorate myelofibrosis or significantly improve survival of patients with advanced myelofibrosis. Here, we show that treatment with the dual phosphoinositide-3-kinase (PI3K)/AKT and mTOR inhibitor BEZ235 attenuated PI3K/AKT and mTOR signaling, as well as induced cell-cycle growth arrest and apoptosis of the cultured human JAK2-V617F-expressing HEL92.1.7 (HEL), UKE1 cells, and primary CD34+ myelofibrosis (MF)-MPN cells. Treatment with BEZ235 also induced significant apoptosis of the JAK2-TKI resistant HEL/TGR cells that were selected for resistance against JAK-TKI. Cotreatment with BEZ235 and JAK2-TKI (TG101209 and SAR302503) synergistically induced lethal activity against the cultured and primary CD34+ MPN cells while relatively sparing the normal CD34+ HPCs. These findings create a compelling rationale to determine the in vivo activity of dual PI3K/mTOR inhibitors in combination with JAK inhibitors against myelofibrosis HPCs.

Journal ArticleDOI
TL;DR: Ligand-independent activation of c- met contributes specifically to erlotinib resistance, not cetuximab resistance, in HNSCC with activated c-Src, where c-Met activation is more dependent on c- Src than on EGFR, providing an alternate survival pathway.
Abstract: Purpose: Strategies to inhibit the EGF receptor (EGFR) using the tyrosine kinase inhibitor erlotinib have been associated with limited clinical efficacy in head and neck squamous cell carcinoma (HNSCC). Co-activation of alternative kinases may contribute to erlotinib resistance. Experimental Design: We generated HNSCC cells expressing dominant-active c-Src (DA-Src) to determine the contribution of c-Src activation to erlotinib response. Results: Expression of DA-Src conferred resistance to erlotinib in vitro and in vivo compared with vector-transfected control cells. Phospho-Met was strongly upregulated by DA-Src, and DA-Src cells did not produce hepatocyte growth factor (HGF). Knockdown of c-Met enhanced sensitivity to erlotinib in DA-Src cells in vitro , as did combining a c-Met or c-Src inhibitor with erlotinib. Inhibiting EGFR resulted in minimal reduction of phospho-Met in DA-Src cells, whereas complete phospho-Met inhibition was achieved by inhibiting c-Src. A c-Met inhibitor significantly sensitized DA-Src tumors to erlotinib in vivo , resulting in reduced Ki67 labeling and increased apoptosis. In parental cells, knockdown of endogenous c-Src enhanced sensitivity to erlotinib, whereas treatment with HGF to directly induce phospho-Met resulted in erlotinib resistance. The level of endogenous phospho-c-Src in HNSCC cell lines was also significantly correlated with erlotinib resistance. Conclusions: Ligand-independent activation of c-Met contributes specifically to erlotinib resistance, not cetuximab resistance, in HNSCC with activated c-Src, where c-Met activation is more dependent on c-Src than on EGFR, providing an alternate survival pathway. Addition of a c-Met or c-Src inhibitor to erlotinib may increase efficacy of EGFR inhibition in patients with activated c-Src. Clin Cancer Res; 19(2); 380–92. ©2012 AACR .

Journal ArticleDOI
31 Jan 2013-Oncogene
TL;DR: It is shown that inhibition of SIRT1 deacetylase by small molecule inhibitors or gene knockdown blocks acquisition of BCR-ABL mutations and relapse of CML cells on tyrosine kinase inhibitors, and implication for targeting Sirt1 to overcome CML drug resistance is revealed.
Abstract: BCR-ABL transforms bone marrow progenitor cells and promotes genome instability, leading to development of chronic myelogenous leukemia (CML). The tyrosine kinase inhibitor imatinib effectively treats CML, but acquired resistance can develop because of BCR-ABL mutations. Mechanisms for acquisition of BCR-ABL mutations are not fully understood. Using a novel culture model of CML acquired resistance, we show that inhibition of SIRT1 deacetylase by small molecule inhibitors or gene knockdown blocks acquisition of BCR-ABL mutations and relapse of CML cells on tyrosine kinase inhibitors. SIRT1 knockdown also suppresses de novo genetic mutations of hypoxanthine phosphoribosyl transferase gene in CML and non-CML cells upon treatment with DNA damaging agent camptothecin. Although SIRT1 can enhance cellular DNA damage response, it alters functions of DNA repair machineries in CML cells and stimulates activity of error-prone DNA damage repair, in association with acquisition of genetic mutations. These results reveal a previously unrecognized role of SIRT1 for promoting mutation acquisition in cancer, and have implication for targeting SIRT1 to overcome CML drug resistance.

Journal ArticleDOI
TL;DR: Clinically, afatinib has been evaluated in the LUX-Lung series of trials, with improvement in progression-free survival reported in patients with EGFR-activating mutations in both first- and second-/third-line settings when compared to chemotherapy.
Abstract: The discovery of epidermal growth-factor receptor (EGFR)-activating mutations and the introduction of oral EGFR tyrosine kinase inhibitors (EGFR-TKIs) have expanded the treatment options for patients with non-small cell lung cancer. The first two reversible EGFR-TKIs, erlotinib and gefitinib, are approved for use in the first-line setting in patients with known EGFR-activating mutations and in the second- and third-line settings for all NSCLC patients. These first-generation EGFR-TKIs improve progression-free survival when compared to chemotherapy in patients with EGFR-activating mutations in the first-line setting. However, nearly all patients develop resistance to EGFR-directed agents. There is a need for further therapy options for patients with disease progression after treatment with reversible EGFR-TKIs. Afatinib is an irreversible ErbB family blocker that inhibits EGFR, HER2, and HER4. In vitro and in vivo, afatinib have shown increased inhibition of the common EGFR-activating mutations as well as the T790M resistance mutation when compared to erlotinib and gefitinib. Clinically, afatinib has been evaluated in the LUX-Lung series of trials, with improvement in progression-free survival reported in patients with EGFR-activating mutations in both first- and second-/third-line settings when compared to chemotherapy. Further investigation is needed to determine the precise role that afatinib will play in the treatment of patients with non-small cell lung cancer and EGFR-activating mutations.

Journal ArticleDOI
TL;DR: BIBF 1120 showed potent antitumor and antiangiogenic activity in preclinical models of lung and pancreatic cancer where it induced hypoxia but not EMT, and the absence of EMT induction, which has been implicated in resistance to antiangIogenic therapies, is noteworthy.
Abstract: Signaling from other angiokinases may underlie resistance to VEGF-directed therapy. We evaluated the antitumor and biologic effects of BIBF 1120 (nintedanib), a tyrosine kinase inhibitor that targets VEGF receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor in preclinical models of lung and pancreatic cancer, including models resistant to VEGF-targeted treatments. In vitro, BIBF 1120 did not show antiproliferative effects, nor did it sensitize tumor cells to chemotherapy. However, in vivo BIBF 1120 inhibited primary tumor growth in all models as a single agent and in combination with standard chemotherapy. Analysis of tumor tissue posttreatment revealed that BIBF 1120 reduced proliferation (phospho-histone 3) and elevated apoptosis (cleaved caspase-3) to a greater extent than chemotherapy alone. Furthermore, BIBF 1120 showed potent antiangiogenic effects, including decreases in microvessel density (CD31), pericyte coverage (NG2), vessel permeability, and perfusion, while increasing hypoxia. Despite the induction of hypoxia, markers of epithelial-to-mesenchymal transition (EMT) were not elevated in BIBF 1120-treated tumors. In summary, BIBF 1120 showed potent antitumor and antiangiogenic activity in preclinical models of lung and pancreatic cancer where it induced hypoxia but not EMT. The absence of EMT induction, which has been implicated in resistance to antiangiogenic therapies, is noteworthy. Together, these results warrant further clinical studies of BIBF 1120.