scispace - formally typeset
Search or ask a question

Showing papers on "Tyrosine-kinase inhibitor published in 2019"


Journal ArticleDOI
TL;DR: It is shown that treatment with dasatinib halts cytolytic activity, cytokine production, and proliferation of CAR T cells in vitro and in vivo, and in a mouse model of cytokine release syndrome, it is demonstrated that a short treatment course of dAsatinib, administered early after CAR T cell infusion, protects a proportion of mice from otherwise fatal CRS.
Abstract: Immunotherapy with chimeric antigen receptor (CAR)-engineered T cells can be effective against advanced malignancies. CAR T cells are "living drugs" that require technologies to enable physicians (and patients) to maintain control over the infused cell product. Here, we demonstrate that the tyrosine kinase inhibitor dasatinib interferes with the lymphocyte-specific protein tyrosine kinase (LCK) and thereby inhibits phosphorylation of CD3ζ and ζ-chain of T cell receptor-associated protein kinase 70 kDa (ZAP70), ablating signaling in CAR constructs containing either CD28_CD3ζ or 4-1BB_CD3ζ activation modules. As a consequence, dasatinib induces a function-off state in CD8+ and CD4+ CAR T cells that is of immediate onset and can be sustained for several days without affecting T cell viability. We show that treatment with dasatinib halts cytolytic activity, cytokine production, and proliferation of CAR T cells in vitro and in vivo. The dose of dasatinib can be titrated to achieve partial or complete inhibition of CAR T cell function. Upon discontinuation of dasatinib, the inhibitory effect is rapidly and completely reversed, and CAR T cells resume their antitumor function. The favorable pharmacodynamic attributes of dasatinib can be exploited to steer the activity of CAR T cells in "function-on-off-on" sequences in real time. In a mouse model of cytokine release syndrome (CRS), we demonstrated that a short treatment course of dasatinib, administered early after CAR T cell infusion, protects a proportion of mice from otherwise fatal CRS. Our data introduce dasatinib as a broadly applicable pharmacologic on/off switch for CAR T cells.

283 citations


Journal ArticleDOI
TL;DR: Dynamic and complex changes in clonal architecture underlying response and resistance to mutation-selective tyrosine kinase inhibitor therapy in AML are illustrated.
Abstract: Gilteritinib is a potent and selective FLT3 kinase inhibitor with single-agent clinical efficacy in relapsed/refractory FLT3-mutated acute myeloid leukemia (AML). In this context, however, gilteritinib is not curative, and response duration is limited by the development of secondary resistance. To evaluate resistance mechanisms, we analyzed baseline and progression samples from patients treated on clinical trials of gilteritinib. Targeted next-generation sequencing at the time of AML progression on gilteritinib identified treatment-emergent mutations that activate RAS/MAPK pathway signaling, most commonly in NRAS or KRAS. Less frequently, secondary FLT3-F691L gatekeeper mutations or BCR–ABL1 fusions were identified at progression. Single-cell targeted DNA sequencing revealed diverse patterns of clonal selection and evolution in response to FLT3 inhibition, including the emergence of RAS mutations in FLT3-mutated subclones, the expansion of alternative wild-type FLT3 subclones, or both patterns simultaneously. These data illustrate dynamic and complex changes in clonal architecture underlying response and resistance to mutation-selective tyrosine kinase inhibitor therapy in AML. Significance: Comprehensive serial genotyping of AML specimens from patients treated with the selective FLT3 inhibitor gilteritinib demonstrates that complex, heterogeneous patterns of clonal selection and evolution mediate clinical resistance to tyrosine kinase inhibition in FLT3-mutated AML. Our data support the development of combinatorial targeted therapeutic approaches for advanced AML. See related commentary by Wei and Roberts, p. 998. This article is highlighted in the In This Issue feature, p. 983

261 citations


Journal ArticleDOI
TL;DR: Tumor genotyping for ALK mutations after failure of a second-generation TKI may identify patients who are more likely to derive clinical benefit from lorlatinib.
Abstract: PURPOSELorlatinib is a potent, brain-penetrant, third-generation anaplastic lymphoma kinase (ALK)/ROS1 tyrosine kinase inhibitor (TKI) with robust clinical activity in advanced ALK-positive non–sma...

245 citations


Journal ArticleDOI
TL;DR: It is shown that FGFR1 amplification is a resistance mechanism to CDK4/6 inhibitor and endocrine therapy and that combined treatment with FGFR, CDK 4/6, and anti-estrogens is a potential therapeutic strategy in Era+ breast cancer tumors.
Abstract: Using an ORF kinome screen in MCF-7 cells treated with the CDK4/6 inhibitor ribociclib plus fulvestrant, we identified FGFR1 as a mechanism of drug resistance. FGFR1-amplified/ER+ breast cancer cells and MCF-7 cells transduced with FGFR1 were resistant to fulvestrant ± ribociclib or palbociclib. This resistance was abrogated by treatment with the FGFR tyrosine kinase inhibitor (TKI) lucitanib. Addition of the FGFR TKI erdafitinib to palbociclib/fulvestrant induced complete responses of FGFR1-amplified/ER+ patient-derived-xenografts. Next generation sequencing of circulating tumor DNA (ctDNA) in 34 patients after progression on CDK4/6 inhibitors identified FGFR1/2 amplification or activating mutations in 14/34 (41%) post-progression specimens. Finally, ctDNA from patients enrolled in MONALEESA-2, the registration trial of ribociclib, showed that patients with FGFR1 amplification exhibited a shorter progression-free survival compared to patients with wild type FGFR1. Thus, we propose breast cancers with FGFR pathway alterations should be considered for trials using combinations of ER, CDK4/6 and FGFR antagonists. Era+ breast cancer patients often develop resistance to endocrine therapy. Here, the authors show that FGFR1 amplification is a resistance mechanism to CDK4/6 inhibitor and endocrine therapy and that combined treatment with FGFR, CDK4/6, and anti-estrogens is a potential therapeutic strategy in Era+ breast cancer tumors.

228 citations


Journal ArticleDOI
TL;DR: It is shown that crizotinib is an effective stimulator of immunogenic cell death and can potentiate the efficacy of immune checkpoint blockade and can exert their anticancer effect through indirect immune-dependent mechanism.
Abstract: Immunogenic cell death (ICD) converts dying cancer cells into a therapeutic vaccine and stimulates antitumor immune responses. Here we unravel the results of an unbiased screen identifying high-dose (10 µM) crizotinib as an ICD-inducing tyrosine kinase inhibitor that has exceptional antineoplastic activity when combined with non-ICD inducing chemotherapeutics like cisplatin. The combination of cisplatin and high-dose crizotinib induces ICD in non-small cell lung carcinoma (NSCLC) cells and effectively controls the growth of distinct (transplantable, carcinogen- or oncogene induced) orthotopic NSCLC models. These anticancer effects are linked to increased T lymphocyte infiltration and are abolished by T cell depletion or interferon-γ neutralization. Crizotinib plus cisplatin leads to an increase in the expression of PD-1 and PD-L1 in tumors, coupled to a strong sensitization of NSCLC to immunotherapy with PD-1 antibodies. Hence, a sequential combination treatment consisting in conventional chemotherapy together with crizotinib, followed by immune checkpoint blockade may be active against NSCLC.

176 citations


Journal ArticleDOI
01 Jan 2019-Oncogene
TL;DR: It is reported that NSCLC cells with acquired resistance to gefitinib or osimertinib (AZD9291) exhibit EMT features, with a decrease in E-cadherin, and increases in vimentin and stemness, without possessing any EGFR secondary mutations.
Abstract: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) is a major advance in treating NSCLC with EGFR-activating mutations. However, acquired resistance, due partially to secondary mutations limits their use. Here we report that NSCLC cells with acquired resistance to gefitinib or osimertinib (AZD9291) exhibit EMT features, with a decrease in E-cadherin, and increases in vimentin and stemness, without possessing any EGFR secondary mutations. Knockdown of E-cadherin in parental cells increased gefitinib resistance and stemness, while knockdown of vimentin in resistant cells resulted in opposite effects. Src activation and Hakai upregulation were found in gefitinib-resistant cells. Knockdown of Hakai elevated E-cadherin expression, attenuated stemness, and resensitized the cells to gefitinib. Clinical cancer specimens with acquired gefitinib resistance also showed a decrease in E-cadherin and an increase in Hakai expression. The dual HDAC and HMGR inhibitor JMF3086 inhibited the Src/Hakai and Hakai/E-cadherin interaction to reverse E-cadherin expression, and attenuated vimentin and stemness to restore gefitinib sensitivity. The EMT features of AZD9291-resistant H1975 cells were related to the upregulation of Zeb1. Both gefitinib and AZD9291 sensitivity was restored by JMF3086 through reversing EMT. Our study not only revealed a common mechanism of EMT in both gefitinib and AZD9291 resistance beyond EGFR mutations per se, but also provides a new strategy to overcome it.

139 citations


Journal ArticleDOI
TL;DR: Osimertinib is now a treatment option for patients with advanced NSCLC harboring EGFRm in the first-line setting, and treatment of choice for patientswith T790 M positive NSCLc following disease progression on first- line EGFR-TKIs.

131 citations


Journal ArticleDOI
TL;DR: The compound osimertinib is a third-generation tyrosine kinase inhibitor, which was granted full FDA approval in March 2017 based on targeting EGFR T790M resistance and has received additional FDA approval as first-line therapy with improvement in progression-free survival by suppressing the activating mutation and preventing the rise of the dominant resistance clone.
Abstract: EGFR-activating mutations are observed in approximately 15% to 20% of patients with non–small cell lung cancer. Tyrosine kinase inhibitors have provided an illustrative example of the successes in targeting oncogene addiction in cancer and the role of tumor-specific adaptations conferring therapeutic resistance. The compound osimertinib is a third-generation tyrosine kinase inhibitor, which was granted full FDA approval in March 2017 based on targeting EGFR T790M resistance. The compound has received additional FDA approval as first-line therapy with improvement in progression-free survival by suppressing the activating mutation and preventing the rise of the dominant resistance clone. Drug development has been breathtaking in this space with other third-generation compounds at various stages of development: rociletinib (CO-1686), olmutinib (HM61713), nazartinib (EGF816), naquotinib (ASP8273), mavelertinib (PF-0647775), and AC0010. However, therapeutic resistance after the administration of third-generation inhibitors is complex and not fully understood, with significant intertumoral and intratumoral heterogeneity. Repeat tissue and plasma analyses on therapy have revealed insights into multiple mechanisms of resistance, including novel second site EGFR mutations, activated bypass pathways such as MET amplification, HER2 amplification, RAS mutations, BRAF mutations, PIK3CA mutations, and novel fusion events. Strategies to understand and predict patterns of mutagenesis are still in their infancy; however, technologies to understand synthetically lethal dependencies and track cancer evolution through therapy are being explored. The expansion of combinatorial therapies is a direction forward targeting minimal residual disease and bypass pathways early based on projected resistance.

130 citations


Journal ArticleDOI
19 Jul 2019-Oncogene
TL;DR: Combining EGFR and FGFR inhibitors inhibited the survival and expansion of EGFR mutant drug-tolerant cells over long time periods, preventing the development of fully resistant cancers in multiple vitro models and in vivo.
Abstract: Evolved resistance to tyrosine kinase inhibitor (TKI)-targeted therapies remains a major clinical challenge. In epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer (NSCLC), failure of EGFR TKIs can result from both genetic and epigenetic mechanisms of acquired drug resistance. Widespread reports of histologic and gene expression changes consistent with an epithelial-to-mesenchymal transition (EMT) have been associated with initially surviving drug-tolerant persister cells, which can seed bona fide genetic mechanisms of resistance to EGFR TKIs. While therapeutic approaches targeting fully resistant cells, such as those harboring an EGFRT790M mutation, have been developed, a clinical strategy for preventing the emergence of persister cells remains elusive. Using mesenchymal cell lines derived from biopsies of patients who progressed on EGFR TKI as surrogates for persister populations, we performed whole-genome CRISPR screening and identified fibroblast growth factor receptor 1 (FGFR1) as the top target promoting survival of mesenchymal EGFR mutant cancers. Although numerous previous reports of FGFR signaling contributing to EGFR TKI resistance in vitro exist, the data have not yet been sufficiently compelling to instigate a clinical trial testing this hypothesis, nor has the role of FGFR in promoting the survival of persister cells been elucidated. In this study, we find that combining EGFR and FGFR inhibitors inhibited the survival and expansion of EGFR mutant drug-tolerant cells over long time periods, preventing the development of fully resistant cancers in multiple vitro models and in vivo. These results suggest that dual EGFR and FGFR blockade may be a promising clinical strategy for both preventing and overcoming EMT-associated acquired drug resistance and provide motivation for the clinical study of combined EGFR and FGFR inhibition in EGFR-mutated NSCLCs.

130 citations



Journal ArticleDOI
10 Oct 2019-Drugs
TL;DR: The milestones in the development of pexidartinib leading to its first approval for TGCT are summarized.
Abstract: Pexidartinib (TURALIO™) is an orally administered small molecule tyrosine kinase inhibitor with selective activity against the colony-stimulating factor 1 (CSF1) receptor, KIT proto-oncogene receptor tyrosine kinase (KIT) and FMS-like tyrosine kinase 3 harboring an internal tandem duplication mutation (FLT3-ITD). In August 2019, the US FDA approved pexidartinib capsules for the treatment of adult patients with symptomatic tenosynovial giant cell tumor (TGCT) associated with severe morbidity or functional limitations and not amenable to improvement with surgery. This approval was based on positive results from the phase III ENLIVEN trial. Pexidartinib is being investigated in various malignancies as monotherapy or combination therapy. This article summarizes the milestones in the development of pexidartinib leading to its first approval for TGCT.

Journal ArticleDOI
TL;DR: This review focuses on the available data of ponatinib and its molecular targets for treatment in various cancers, with a discussion on the broader potential of this agent in other cancer indications.
Abstract: Human malignancies are often the result of overexpressed and constitutively active receptor and non-receptor tyrosine kinases, which ultimately lead to the mediation of key tumor-driven pathways. Several tyrosine kinases (ie, EGFR, FGFR, PDGFR, VEGFR), are aberrantly activated in most common tumors, including leukemia, glioblastoma, gastrointestinal stromal tumors, non-small-cell lung cancer, and head and neck cancers. Iclusig™ (ponatinib, previously known as AP24534) is an orally active multi-tyrosine kinase inhibitor and is currently approved by the US Food and Drug Administration for patients with chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, specifically targeting the BCR-ABL gene mutation, T315I. Due to ponatinib's unique multi-targeted characteristics, further studies have demonstrated its ability to target other important tyrosine kinases (FGFR, PDGFR, SRC, RET, KIT, and FLT1) in other human malignancies. This review focuses on the available data of ponatinib and its molecular targets for treatment in various cancers, with a discussion on the broader potential of this agent in other cancer indications.

Journal ArticleDOI
TL;DR: Overall, lorlatinib 100 mg once daily has a unique safety profile to be considered when prescribed, based on the recent U.S. Food and Drug Administration approval, for the treatment of patients with ALK-positive metastatic non-small cell lung cancer previously treated with a second-generation ALK TKI.
Abstract: Lorlatinib is a novel, highly potent, brain-penetrant, third-generation ALK/ROS1 tyrosine kinase inhibitor (TKI), which has broad-spectrum potency against most known resistance mutations that can develop during treatment with crizotinib and second-generation ALK TKIs. The safety profile of lorlatinib was established based on 295 patients who had received the recommended dose of lorlatinib 100 mg once daily. Adverse events associated with lorlatinib are primarily mild to moderate in severity, with hypercholesterolemia (82.4%), hypertriglyceridemia (60.7%), edema (51.2%), peripheral neuropathy (43.7%), and central nervous system effects (39.7%) among the most frequently reported. These can be effectively managed with dose modification and/or standard supportive medical therapy, as indicated by a low incidence of permanent discontinuations due to adverse reactions. Most patients (81.0%) received at least one lipid-lowering agent. Prescription of supportive therapy should also consider the potential for drug-drug interactions with lorlatinib via engagement of specific CYP450 enzymes. This article summarizes the clinical experience from lorlatinib phase I investigators and was generated from discussion and review of the clinical study protocol and database to provide an expert consensus opinion on the management of the key adverse reactions reported with lorlatinib, including hyperlipidemia, central nervous system effects, weight increase, edema, peripheral neuropathy, and gastrointestinal effects. Overall, lorlatinib 100 mg once daily has a unique safety profile to be considered when prescribed, based on the recent U.S. Food and Drug Administration approval, for the treatment of patients with ALK-positive metastatic non-small cell lung cancer previously treated with a second-generation ALK TKI. IMPLICATIONS FOR PRACTICE: Despite the advancement of second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs), the emergence of resistance and progression of central nervous system metastases remain clinically significant problems in ALK-positive non-small cell lung cancer. Lorlatinib is a potent, brain-penetrant, third-generation, macrocyclic ALK/ROS1 TKI, with broad-spectrum potency against most known resistance mutations that can develop during treatment with existing first- and second-generation ALK TKIs. This article provides recommendations for the clinical management of key adverse reactions reported with lorlatinib.

Journal ArticleDOI
TL;DR: The study suggests that long intergenic non-coding RNA 00665 is important for non-small-cell lung cancer to develop drug resistance and might be a potential biomarker for drug resistance
Abstract: Gefitinib, a tyrosine kinase inhibitor of epidermal growth factor receptor, has been used as the first choice of treatment for advanced non-small-cell lung cancer. However, during the course of treatment, cancer cells often develop resistance to gefitinib without fully understood mechanisms. In this study, we aimed to elucidate an important role of long intergenic non-coding RNA 00665 in developing resistance to gefitinib in non-small-cell lung cancer. We showed that long intergenic non-coding RNA 00665 expression was significantly upregulated in lung cancer tissues and cells with acquired gefitinib resistance. Long intergenic non-coding RNA 00665 knockdown restored gefitinib sensitivity both in vitro and in vivo by suppressing cell proliferation and inducing apoptosis. Moreover, knockdown of long intergenic non-coding RNA 00665 markedly reduced activation of EGFR and its downstream event protein kinase B (AKT). Moreover, LINC00665 could interact with EZH2 and regulate the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Thus, our study suggests that long intergenic non-coding RNA 00665 is important for non-small-cell lung cancer to develop drug resistance and might be a potential biomarker for drug resistance and a therapeutic target for non-small-cell lung cancer.

Journal ArticleDOI
01 Apr 2019-Leukemia
TL;DR: It is presented that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion, providing a strong rationale for clinical use of second generation autophagic inhibitors as a novel treatment for CML patients with LSC persistence.
Abstract: In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: Lin−Sca-1+c-kit+CD48−CD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence.

Journal ArticleDOI
TL;DR: The c-Abl/YAPY357 pathway serves as a mechanism for the activation of integrin &agr;5&bgr;1 and the atherogenic phenotype of ECs in response to OSS, and provides a potential therapeutic strategy for atherogenesis.
Abstract: Local flow patterns determine the uneven distribution of atherosclerotic lesions. This research aims to elucidate the mechanism of regulation of nuclear translocation of Yes-associated protein (YAP) under oscillatory shear stress (OSS) in the atheroprone phenotype of endothelial cells (ECs). We report here that OSS led to tyrosine phosphorylation and strong, continuous nuclear translocation of YAP in ECs that is dependent on integrin α5β1 activation. YAP overexpression in ECs blunted the anti-atheroprone effect of an integrin α5β1-blocking peptide (ATN161) in Apoe-/- mice. Activation of integrin α5β1 induced tyrosine, but not serine, phosphorylation of YAP in ECs. Blockage of integrin α5β1 with ATN161 abolished the phosphorylation of YAP at Y357 induced by OSS. Mechanistic studies showed that c-Abl inhibitor attenuated the integrin α5β1-induced YAP tyrosine phosphorylation. Furthermore, the phosphorylation of c-Abl and YAPY357 was significantly increased in ECs in atherosclerotic vessels of mice and in human plaques versus normal vessels. Finally, bosutinib, a tyrosine kinase inhibitor, markedly reduced the level of YAPY357 and the development of atherosclerosis in Apoe-/- mice. The c-Abl/YAPY357 pathway serves as a mechanism for the activation of integrin α5β1 and the atherogenic phenotype of ECs in response to OSS, and provides a potential therapeutic strategy for atherogenesis.

Journal ArticleDOI
TL;DR: Preclinical work indicates that anlotinib acts as a novel inhibitor of VEGFR2 and MET that blocks tumorigenesis in osteosarcoma, which could be translated into future clinical trials.
Abstract: Osteosarcoma is the most common primary malignant bone tumor in children and adolescents, with highly aggressive behavior and early systemic metastasis. The survival rates for osteosarcoma remain unchanged over the past two decades. Studies aiming to find new or alternative therapies for patients with refractory osteosarcoma are urgently needed. Anlotinib, a novel multi-targeted tyrosine kinase inhibitor (TKI), has exhibited encouraging clinical activity in NSLCC and soft tissue sarcoma, whereas its effect on osteosarcoma has not been studied. In our study, we investigated the anti-tumor activity and underlying mechanism of anlotinib in osteosarcoma. Various in vitro and in vivo models of human osteosarcoma were used to determine the anti-proliferative, anti-angiogenesis and anti-metastasis efficacy of anlotinib. Our results showed that anlotinib suppressed tumor growth and increased the chemo-sensitivity of osteosarcoma. In addition, anlotinib inhibited migration and invasion in osteosarcoma cells. Furthermore, in order to explore the anti-tumor mechanism of anlotinib, phospho-RTK antibody arrays were performed. These analyses confirmed that anlotinib suppressed the phosphorylation of MET, VEGFR2 and the downstream signaling pathway activation. Moreover, we demonstrated that anlotinib blocked hepatocyte growth factor (HGF)-induced cell migration, invasion and VEGF-induced angiogenesis. Notably, a 143B-Luc orthotopic osteosarcoma model further showed that anlotinib significantly inhibited growth and lung metastasis of implanted tumor cells. Our preclinical work indicates that anlotinib acts as a novel inhibitor of VEGFR2 and MET that blocks tumorigenesis in osteosarcoma, which could be translated into future clinical trials.

Journal ArticleDOI
TL;DR: Cabozantinib has a unique immunomodulatory profile and has demonstrated clinical efficacy as a monotherapy in mRCC and mUC, making it a potentially suitable partner for checkpoint inhibitor therapy.
Abstract: The treatment landscape for metastatic renal cell carcinoma (mRCC) and urothelial carcinoma (mUC) has evolved rapidly in recent years with the approval of several checkpoint inhibitors. Despite these advances, survival rates for metastatic disease remain poor, and additional strategies will be needed to improve the efficacy of checkpoint inhibitors. Combining anti-VEGF/VEGFR agents with checkpoint inhibitors has emerged as a potential strategy to advance the immunotherapy paradigm, because VEGF inhibitors have immunomodulatory potential. Cabozantinib is a tyrosine kinase inhibitor (TKI) whose targets include MET, AXL, and VEGFR2. Cabozantinib has a unique immunomodulatory profile and has demonstrated clinical efficacy as a monotherapy in mRCC and mUC, making it a potentially suitable partner for checkpoint inhibitor therapy. In this review, we summarize the current status of immunotherapy for mRCC and mUC and discuss the development of immunotherapy-TKI combinations, with a focus on cabozantinib. We discuss the rationale for such combinations based on our growing understanding of the tumor microenvironment, and we review in detail the preclinical and clinical studies supporting their use.

Journal ArticleDOI
TL;DR: This work shows that DDR2 depletion increases sensitivity to anti–PD-1 treatment compared to monotherapy, and provides strong scientific rationale for targeting DDR2 in combination with PD-1 inhibitors.
Abstract: While a fraction of cancer patients treated with anti-PD-1 show durable therapeutic responses, most remain unresponsive, highlighting the need to better understand and improve these therapies. Using an in vivo screening approach with a customized shRNA pooled library, we identified DDR2 as a leading target for the enhancement of response to anti-PD-1 immunotherapy. Using isogenic in vivo murine models across five different tumor histologies-bladder, breast, colon, sarcoma, and melanoma-we show that DDR2 depletion increases sensitivity to anti-PD-1 treatment compared to monotherapy. Combination treatment of tumor-bearing mice with anti-PD-1 and dasatinib, a tyrosine kinase inhibitor of DDR2, led to tumor load reduction. RNA-seq and CyTOF analysis revealed higher CD8+ T cell populations in tumors with DDR2 depletion and those treated with dasatinib when either was combined with anti-PD-1 treatment. Our work provides strong scientific rationale for targeting DDR2 in combination with PD-1 inhibitors.

Journal ArticleDOI
TL;DR: Careful consideration and monitoring for hepatotoxicity may be warranted in patients treated with crizotinib after ICI therapy, as sequential ICI and crizotoxicity treatment is associated with a significantly increased risk of hepatot toxicity.

Journal ArticleDOI
TL;DR: Although up to 26% of TKI-naive EGFR-mutant-positive NSCLC harbor high MET CNG by fluorescence in situ hybridization, this did not significantly affect response to TKI, except in patients identified as MET-amplified.
Abstract: PurposeMesenchymal epithelial transition factor (MET) activation has been implicated as an oncogenic driver in epidermal growth factor receptor (EGFR)–mutant non–small-cell lung cancer (NSCLC) and can mediate primary and secondary resistance to EGFR tyrosine kinase inhibitors (TKI). High copy number thresholds have been suggested to enrich for response to MET inhibitors. We examined the clinical relevance of MET copy number gain (CNG) in the setting of treatment-naive metastatic EGFR-mutant–positive NSCLC.Patients and MethodsMET fluorescence in situ hybridization was performed in 200 consecutive patients identified as metastatic treatment-naive EGFR-mutant–positive. We defined MET-high as CNG greater than or equal to 5, with an additional criterion of MET/centromeric portion of chromosome 7 ratiο greater than or equal to 2 for amplification. Time-to-treatment failure (TTF) to EGFR TKI in patients identified as MET-high and -low was estimated by Kaplan-Meier method and compared using log-rank test. Multire...

Journal ArticleDOI
TL;DR: The clinical efficacy of anlotinib was similar to that of sunitinib as the first-line treatment for mRCC, but with a more favorable safety profile.
Abstract: BACKGROUND Anlotinib is a tyrosine kinase inhibitor inhibiting angiogenesis. This multicenter, randomized phase II trial aimed to investigate the efficacy and safety of anlotinib in comparison with sunitinib as first-line treatment for patients with metastatic renal cell carcinoma (mRCC). MATERIALS AND METHODS Patients with mRCC from 13 clinical centers were randomly assigned in a 2:1 ratio to receive anlotinib (n = 90) or sunitinib (n = 43). Anlotinib was given orally at a dose of 12 mg once daily (2 weeks on/1 week off), and sunitinib was given orally at 50 mg once daily (4 weeks on/2 weeks off). The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety. RESULTS The median PFS was similar with anlotinib and sunitinib (17.5 vs. 16.6 months, p > .05). The median OS (30.9 vs. 30.5 months, p > .05), ORR (30.3% vs. 27.9%), and 6-week DCR (97.8% vs. 93.0%) were similar in the two groups. Adverse events (AEs) of grade 3 or 4 were significantly less frequent with anlotinib than with sunitinib (28.9% vs. 55.8%, p < .01), especially in terms of thrombocytopenia and neutropenia. AEs occurring at a lower frequency with anlotinib were hand-foot syndrome, eyelid edema, hair depigmentation, skin yellowing, neutropenia, thrombocytopenia, and anemia. The incidence of serious AEs was lower with anlotinib than with sunitinib. CONCLUSION The clinical efficacy of anlotinib was similar to that of sunitinib as the first-line treatment for mRCC, but with a more favorable safety profile. IMPLICATIONS FOR PRACTICE This study evaluated the efficacy and safety of anlotinib for the first-line treatment of metastatic renal cell carcinoma. Anlotinib, which was developed independently in China, is a new tyrosine kinase inhibitor inhibiting multiple kinases involved in angiogenesis and tumor proliferation. Results indicated that the efficacy of anlotinib is comparable to and the safety is better than that of sunitinib.

Journal ArticleDOI
TL;DR: ERBB2 mutations hyperactivate the HER3/PI3K/AKT/mTOR axis, leading to antiestrogen resistance in ER+ breast cancer and dual blockade of the HER2 and ER pathways is required for the treatment of ER+/HER2 mutant breast cancers.
Abstract: Purpose: We examined the role of ERBB2-activating mutations in endocrine therapy resistance in estrogen receptor positive (ER+) breast cancer. Experimental Design: ERBB2 mutation frequency was determined from large genomic databases. Isogenic knock-in ERBB2 mutations in ER+ MCF7 cells and xenografts were used to investigate estrogen-independent growth. Structural analysis was used to determine the molecular interaction of HERL755S with HER3. Small molecules and siRNAs were used to inhibit PI3Kα, TORC1, and HER3. Results: Genomic data revealed a higher rate of ERBB2 mutations in metastatic versus primary ER+ tumors. MCF7 cells with isogenically incorporated ERBB2 kinase domain mutations exhibited resistance to estrogen deprivation and to fulvestrant both in vitro and in vivo, despite maintaining inhibition of ERα transcriptional activity. Addition of the irreversible HER2 tyrosine kinase inhibitor neratinib restored sensitivity to fulvestrant. HER2-mutant MCF7 cells expressed higher levels of p-HER3, p-AKT, and p-S6 than cells with wild-type HER2. Structural analysis of the HER2L755S variant implicated a more flexible active state, potentially allowing for enhanced dimerization with HER3. Treatment with a PI3Kα inhibitor, a TORC1 inhibitor or HER3 siRNA, but not a MEK inhibitor, restored sensitivity to fulvestrant and to estrogen deprivation. Inhibition of mutant HER2 or TORC1, when combined with fulvestrant, equipotently inhibited growth of MCF7/ERBB2V777L xenografts, suggesting a role for TORC1 in antiestrogen resistance induced by ERBB2 mutations. Conclusions: ERBB2 mutations hyperactivate the HER3/PI3K/AKT/mTOR axis, leading to antiestrogen resistance in ER+ breast cancer. Dual blockade of the HER2 and ER pathways is required for the treatment of ER+/HER2 mutant breast cancers.

Journal ArticleDOI
TL;DR: Findings show that pan-inhibition of TAM receptors in combination with anti-PD-1 may have clinical value as cancer therapeutics to promote an inflammatory tumor microenvironment and improve host antitumor immunity.
Abstract: Tyro3, Axl, and Mertk (TAM) represent a family of homologous tyrosine kinase receptors known for their functional role in phosphatidylserine (PS)-dependent clearance of apoptotic cells and also for their immune modulatory functions in the resolution of inflammation. Previous studies in our laboratory have shown that Gas6/PS-mediated activation of TAM receptors on tumor cells leads to subsequent upregulation of PD-L1, defining a putative PS→TAM receptor→PD-L1 inhibitory signaling axis in the cancer microenvironment that may promote tolerance. In this study, we tested combinations of TAM inhibitors and PD-1 mAbs in a syngeneic orthotopic E0771 murine triple-negative breast cancer model, whereby tumor-bearing mice were treated with pan-TAM kinase inhibitor (BMS-777607) or anti-PD-1 alone or in combination. Tyro3, Axl, and Mertk were differentially expressed on multiple cell subtypes in the tumor microenvironment. Although monotherapeutic administration of either pan-TAM kinase inhibitor (BMS-777607) or anti-PD-1 mAb therapy showed partial antitumor activity, combined treatment of BMS-777607 with anti-PD-1 significantly decreased tumor growth and incidence of lung metastasis. Moreover, combined treatment with BMS-777607 and anti-PD-1 showed increased infiltration of immune stimulatory T cells versus either monotherapy treatment alone. RNA NanoString profiling showed enhanced infiltration of antitumor effector T cells and a skewed immunogenic immune profile. Proinflammatory cytokines increased with combinational treatment. Together, these studies indicate that pan-TAM inhibitor BMS-777607 cooperates with anti-PD-1 in a syngeneic mouse model for triple-negative breast cancer and highlights the clinical potential for this combined therapy. SIGNIFICANCE: These findings show that pan-inhibition of TAM receptors in combination with anti-PD-1 may have clinical value as cancer therapeutics to promote an inflammatory tumor microenvironment and improve host antitumor immunity.

Journal ArticleDOI
TL;DR: In silico studies showed a significant correlation between G6PD expression and tumour relapse/resistance in patients, and point out that autophagy and PPP are crucial players in TKI resistance, and highlight a peculiar vulnerability of breast cancer cells, where impairment of metabolic pathways and autophile could be used to reinforce TKI efficacy in cancer treatment.
Abstract: Glucose-6-phospate dehydrogenase (G6PD) is the limiting enzyme of the pentose phosphate pathway (PPP) correlated to cancer progression and drug resistance. We previously showed that G6PD inhibition leads to Endoplasmic Reticulum (ER) stress often associated to autophagy deregulation. The latter can be induced by target-based agents such as Lapatinib, an anti-HER2 tyrosine kinase inhibitor (TKI) largely used in breast cancer treatment. Here we investigate whether G6PD inhibition causes autophagy alteration, which can potentiate Lapatinib effect on cancer cells. Immunofluorescence and flow cytometry for LC3B and lysosomes tracker were used to study autophagy in cells treated with lapatinib and/or G6PD inhibitors (polydatin). Immunoblots for LC3B and p62 were performed to confirm autophagy flux analyses together with puncta and colocalization studies. We generated a cell line overexpressing G6PD and performed synergism studies on cell growth inhibition induced by Lapatinib and Polydatin using the median effect by Chou-Talay. Synergism studies were additionally validated with apoptosis analysis by annexin V/PI staining in the presence or absence of autophagy blockers. We found that the inhibition of G6PD induced endoplasmic reticulum stress, which was responsible for the deregulation of autophagy flux. Indeed, G6PD blockade caused a consistent increase of autophagosomes formation independently from mTOR status. Cells engineered to overexpress G6PD became resilient to autophagy and resistant to lapatinib. On the other hand, G6PD inhibition synergistically increased lapatinib-induced cytotoxic effect on cancer cells, while autophagy blockade abolished this effect. Finally, in silico studies showed a significant correlation between G6PD expression and tumour relapse/resistance in patients. These results point out that autophagy and PPP are crucial players in TKI resistance, and highlight a peculiar vulnerability of breast cancer cells, where impairment of metabolic pathways and autophagy could be used to reinforce TKI efficacy in cancer treatment.

Journal ArticleDOI
TL;DR: Even if sunitinib is promising in the therapy of differentiated thyroid carcinoma (DTC), until now no phase III studies have been published, and additional prospective researches are necessary in order to evaluate the real efficacy of sunit inib in aggressive thyroid cancer.
Abstract: Background Sunitinib (SU11248) is an oral multi-target tyrosine kinase inhibitor (TKI) with low molecular weight, that inhibits platelet-derived growth factor receptors (PDGF-Rs) and vascular endothelial growth factor receptors (VEGFRs), c-KIT, fms-related tyrosine kinase 3 (FLT3) and RET. The concurrent inhibition of these pathways reduces tumor vascularization and causes cancer cell apoptosis, inducing a tumor shrinkage. Sunitinib is approved for the treatment of imatinib-resistant gastrointestinal stromal tumor (GIST), renal carcinoma, and pancreatic neuroendocrine tumors. Methods We searched the literature on PubMed library. Results In vitro studies showed that sunitinib targeted the cytosolic MEK/ERK and SAPK/JNK pathways in the RET/PTC1 cell inhibiting cell proliferation and causing stimulation of sodium/iodide symporter (NIS) gene expression in RET/PTC1 cells. Furthermore sunitinib is active in vitro and in vivo against anaplastic thyroid cancer (ATC) cells. Most of the clinical studies report that sunitinib is effective as first- and second-line TKI therapy in patients with advanced dedifferentiated thyroid cancer (DeTC), or medullary thyroid cancer (MTC). Sunitinib 37.5 mg/day is well tolerated, and effective. The most common adverse events include: reduction in blood cell counts (in particular leukocytes), hand-foot skin reaction, diarrhea, fatigue, nausea, hypertension, and musculoskeletal pain. Conclusion Even if sunitinib is promising in the therapy of differentiated thyroid carcinoma (DTC), until now no phase III studies have been published, and additional prospective researches are necessary in order to evaluate the real efficacy of sunitinib in aggressive thyroid cancer.

Journal ArticleDOI
TL;DR: This study demonstrates a translational framework for treating rapidly evolving tumors through preclinical modeling and single-cell analyses and demonstrates that combination of IMC-targeting tyrosine kinase inhibitor cabozantinib and immune checkpoint blockade enhances anti-tumor immunity, and overcomes resistance.
Abstract: Acquired resistance to targeted cancer therapy is a significant clinical challenge. In parallel with clinical trials combining CDK4/6 inhibitors to treat HER2+ breast cancer, we sought to prospectively model tumor evolution in response to this regimen in vivo and identify a clinically actionable strategy to combat drug resistance. Despite a promising initial response, acquired resistance emerges rapidly to the combination of anti-HER2/neu antibody and CDK4/6 inhibitor Palbociclib. Using high-throughput single-cell profiling over the course of treatments, we reveal a distinct immunosuppressive immature myeloid cell (IMC) population to infiltrate the resistant tumors. Guided by single-cell transcriptome analysis, we demonstrate that combination of IMC-targeting tyrosine kinase inhibitor cabozantinib and immune checkpoint blockade enhances anti-tumor immunity, and overcomes the resistance. Furthermore, sequential combinatorial immunotherapy enables a sustained control of the fast-evolving CDK4/6 inhibitor-resistant tumors. Our study demonstrates a translational framework for treating rapidly evolving tumors through preclinical modeling and single-cell analyses. The benefit of combined CDK4/6 and anti-HER2 therapy in breast cancer is limited due to acquired resistance. Here, the authors perform single-cell analysis and show an immature myeloid cell population to infiltrate resistant tumors, and that combined cabozantinib and checkpoint therapy overcome this resistance with a sustained efficacy.

Journal ArticleDOI
TL;DR: An update on what is currently known on the mechanisms underlying progression and the latest acquisitions on BCR-ABL1-independent resistance and leukemia stem cell persistence are provided.
Abstract: Chronic myeloid leukemia (CML) is characterized by the presence of the BCR-ABL1 fusion gene, which encodes a constitutive active tyrosine kinase considered to be the pathogenic driver capable of initiating and maintaining the disease. Despite the remarkable efficacy of tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1, some patients may not respond (primary resistance) or may relapse after an initial response (secondary resistance). In a small proportion of cases, development of resistance is accompanied or shortly followed by progression from chronic to blastic phase (BP), characterized by a dismal prognosis. Evolution from CP into BP is a multifactorial and probably multistep phenomenon. Increase in BCR-ABL1 transcript levels is thought to promote the onset of secondary chromosomal or genetic defects, induce differentiation arrest, perturb RNA transcription, editing and translation that together with epigenetic and metabolic changes may ultimately lead to the expansion of highly proliferating, differentiation-arrested malignant cells. A multitude of studies over the past two decades have investigated the mechanisms underlying the closely intertwined phenomena of drug resistance and disease progression. Here, we provide an update on what is currently known on the mechanisms underlying progression and present the latest acquisitions on BCR-ABL1-independent resistance and leukemia stem cell persistence.

Journal ArticleDOI
TL;DR: This article is a review and analysis of current literature on the properties of curcumin and its derivatives in the treatment of cancers directed to signaling pathways of tyrosine kinases and confronts the problem of low assimilation ofCurcumin with potential therapeutic effects.

Journal ArticleDOI
TL;DR: This small series suggests blinatumomab’s concurrent with commercially available TKIs as consolidative therapy to spare toxicities of conventional chemotherapy is a safe and effective consolidation strategy for patients with Ph’+ ALL to achieve or maintain CMR.