scispace - formally typeset
Search or ask a question
Topic

Ultraviolet light

About: Ultraviolet light is a research topic. Over the lifetime, 49494 publications have been published within this topic receiving 843151 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: "Noncompensated n-p codoping" is established as an enabling concept for enhancing the visible-light photoactivity of TiO2 by narrowing its band gap using scanning tunneling spectroscopy, dramatically redshifted optical absorbance, and enhanced photoactivity manifested by efficient electron-hole separation in thevisible-light region.
Abstract: Titanium dioxide (TiO2) is widely recognized as one of the most promising photocatalysts for solar energy utilization and environmental cleanup, but because of its wide bandgap, pure TiO2 can only absorbs ultraviolet light, which represents 4% of the solar spectrum1-6. Here we establish a conceptually novel approach, termed non-compensated n-p codoping, to narrow the bandgap of TiO2 and shift the optical response into the visible spectral range where a much larger fraction of the solar spectrum can be captured. The concept embodies two key ingredients: The electrostatic attraction within the n-p dopant pair enhances the thermodynamic and kinetic solubility in substitutional doping, and the non-compensated nature ensures the creation of broadened intermediate electronic states that effectively narrow the bandgap. The concept is demonstrated quantitatively within first-principles density functional theory. The experimental evidence for bandgap narrowing is obtained in the forms of direct measurements of the density of states by scanning tunneling spectroscopy, dramatically redshifted and increased optical absorbance, and enhanced photoactivity manifested by efficient hole-electron separation in the visible spectral region. These findings represent the first crucial steps toward development of a new class of titania-based photocatalysts with greatly enhanced efficiency of solar energy conversion facilitating environmentally friendly applications ofrenewablemore » energy.« less

343 citations

Journal ArticleDOI
TL;DR: Evidence in favor of the existence of skin-associated lymphoid tissues (SALT) includes that the cutaneous microenvironment is capable on its own of accepting, processing, and presenting nominal antigen, and subsets of T lymphocytes display differential affinity for skin and its associated peripheral nodes.

343 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated numerically the properties of metallo-dielectric, one-dimensional, photonic band-gap structures and showed that interference effects give rise to a new transparent metallic structure that permits the transmission of light over a tunable range of frequencies, for example, the ultraviolet, the visible or the infrared wavelength range.
Abstract: We investigate numerically the properties of metallo-dielectric, one-dimensional, photonic band-gap structures. Our theory predicts that interference effects give rise to a new transparent metallic structure that permits the transmission of light over a tunable range of frequencies, for example, the ultraviolet, the visible, or the infrared wavelength range. The structure can be designed to block ultraviolet light, transmit in the visible range, and reflect all other electromagnetic waves of lower frequencies, from infrared to microwaves and beyond. The transparent metallic structure is composed of a stack of alternating layers of a metal and a dielectric material, such that the complex index of refraction alternates between a high and a low value. The structure remains transparent even if the total amount of metal is increased to hundreds of skin depths in net thickness.

342 citations

Journal ArticleDOI
TL;DR: Overall, ultraviolet-induced melanogenesis may be one part of a eukaryotic SOS response to damaging ultraviolet irradiation that has evolved over time to provide a protective tan in skin at risk of further injury from sun exposure.
Abstract: Work in the past 8 years, particularly in the past 1-2 years, has greatly expanded our understanding of the mechanisms by which ultraviolet irradiation stimulates melanogenesis in the skin. A direct effect of UV photons on DNA results in up-regulation of the gene for tyrosinase, the rate-limiting enzyme in melanin synthesis, as well as an increase in cell surface expression of receptors for at least one of the several known keratinocyte-derived melanogenic factors, MSH. Direct effects of UV on melanocyte membranes, releasing DAG and arachidonic acid, may also play a role in the tanning response. Diacylglycerol may activate PKC-beta, which in turn phosphorylates and activates tyrosinase protein; the pathways by which products of other inflammatory mediator cascades may act on melanogenesis are unknown. The tanning response also relies heavily on UV-stimulated increased production and release of numerous keratinocyte-derived factors including bFGF, NGF, endothelin-1 and the POMC-derived peptides MSH, ACTH, beta-LPH and beta-endorphin. These factors variably induce melanocyte mitosis, increase melanogenesis, enhance dendricity and prevent apoptotic cell death following the UV injury. Thus, events within the epidermal melanin unit conspire to maintain or increase melanocyte number, increase melanin pigment throughout the epidermis. Overall, ultraviolet-induced melanogenesis may be one part of a eukaryotic SOS response to damaging ultraviolet irradiation that has evolved over time to provide a protective tan in skin at risk of further injury from sun exposure. These recent insights into the mechanisms underlying ultraviolet-induced melanogenesis offer the opportunity for novel therapeutic approaches to minimizing acute and chronic photodamage in human skin.

341 citations

Journal ArticleDOI
TL;DR: In this paper, a thiol monomer is shown to copolymerize with vinyl ether, allyl, acrylate, methacrylate and vinylbenzene monomers.
Abstract: A thiol monomer is shown to copolymerize with vinyl ether, allyl, acrylate, methacrylate, and vinylbenzene monomers. These thiol−ene polymerizations are photoinitiated without the use of photoinitiator molecules. It is seen that the polymerization proceeds more readily when initiatorless samples are irradiated with light centered around 254 nm as compared to 365 nm light. To demonstrate resistance to oxygen inhibition, thin polymer films of 3−15 μm are polymerized while exposed to ambient air. Without photoinitiator molecules present, light is attenuated only by the monomer and polymer. This feature leads to greater penetration of ultraviolet light and allows for the polymerization of extremely thick polymers. Thick cures of up to 25 in. are obtained using a thiol−vinyl ether system.

341 citations


Network Information
Related Topics (5)
DNA
107.1K papers, 4.7M citations
79% related
Cell culture
133.3K papers, 5.3M citations
75% related
Amino acid
124.9K papers, 4M citations
75% related
Cell growth
104.2K papers, 3.7M citations
74% related
Cancer cell
93.4K papers, 3.5M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202346
2022181
20211,101
20201,978
20192,639
20182,772