scispace - formally typeset
Search or ask a question
Topic

Underwater acoustic communication

About: Underwater acoustic communication is a research topic. Over the lifetime, 6692 publications have been published within this topic receiving 94851 citations.


Papers
More filters
Journal ArticleDOI
01 May 2005
TL;DR: In this paper, several fundamental key aspects of underwater acoustic communications are investigated and a cross-layer approach to the integration of all communication functionalities is suggested.
Abstract: Underwater sensor nodes will find applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications. Moreover, unmanned or autonomous underwater vehicles (UUVs, AUVs), equipped with sensors, will enable the exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. Underwater acoustic networking is the enabling technology for these applications. Underwater networks consist of a variable number of sensors and vehicles that are deployed to perform collaborative monitoring tasks over a given area. In this paper, several fundamental key aspects of underwater acoustic communications are investigated. Different architectures for two-dimensional and three-dimensional underwater sensor networks are discussed, and the characteristics of the underwater channel are detailed. The main challenges for the development of efficient networking solutions posed by the underwater environment are detailed and a cross-layer approach to the integration of all communication functionalities is suggested. Furthermore, open research issues are discussed and possible solution approaches are outlined. � 2005 Published by Elsevier B.V.

2,864 citations

Journal ArticleDOI
TL;DR: There are no standardized models for the acoustic channel fading, and experimental measurements are often made to assess the statistical properties of the channel in particular deployment sites, but the channel capacity depends on the distance, and may be extremely limited.
Abstract: Acoustic propagation is characterized by three major factors: attenuation that increases with signal frequency, time-varying multipath propagation, and low speed of sound (1500 m/s). The background noise, although often characterized as Gaussian, is not white, but has a decaying power spectral density. The channel capacity depends on the distance, and may be extremely limited. Because acoustic propagation is best supported at low frequencies, although the total available bandwidth may be low, an acoustic communication system is inherently wideband in the sense that the bandwidth is not negligible with respect to its center frequency. The channel can have a sparse impulse response, where each physical path acts as a time-varying low-pass filter, and motion introduces additional Doppler spreading and shifting. Surface waves, internal turbulence, fluctuations in the sound speed, and other small-scale phenomena contribute to random signal variations. At this time, there are no standardized models for the acoustic channel fading, and experimental measurements are often made to assess the statistical properties of the channel in particular deployment sites.

1,493 citations

Journal ArticleDOI
TL;DR: A review of the state of the art of AUV navigation and localization, as well as a description of some of the more commonly used methods, are presented and areas of future research potential are highlighted.
Abstract: Autonomous underwater vehicle (AUV) navigation and localization in underwater environments is particularly challenging due to the rapid attenuation of Global Positioning System (GPS) and radio-frequency signals. Underwater communications are low bandwidth and unreliable, and there is no access to a global positioning system. Past approaches to solve the AUV localization problem have employed expensive inertial sensors, used installed beacons in the region of interest, or required periodic surfacing of the AUV. While these methods are useful, their performance is fundamentally limited. Advances in underwater communications and the application of simultaneous localization and mapping (SLAM) technology to the underwater realm have yielded new possibilities in the field. This paper presents a review of the state of the art of AUV navigation and localization, as well as a description of some of the more commonly used methods. In addition, we highlight areas of future research potential.

1,049 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the existing network technology and its applicability to underwater acoustic channels and present a shallow-water acoustic network example and outline some future research directions for underwater acoustic networks.
Abstract: With the advances in acoustic modem technology that enabled high-rate reliable communications, current research focuses on communication between various remote instruments within a network environment. Underwater acoustic (UWA) networks are generally formed by acoustically connected ocean-bottom sensors, autonomous underwater vehicles, and a surface station, which provides a link to an on-shore control center. While many applications require long-term monitoring of the deployment area, the battery-powered network nodes limit the lifetime of UWA networks. In addition, shallow-water acoustic channel characteristics, such as low available bandwidth, highly varying multipath, and large propagation delays, restrict the efficiency of UWA networks. Within such an environment, designing an UWA network that maximizes throughput and reliability while minimizing the power consumption becomes a very difficult task. The goal of this paper is to survey the existing network technology and its applicability to underwater acoustic channels. In addition, we present a shallow-water acoustic network example and outline some future research directions.

1,021 citations

Proceedings ArticleDOI
03 Apr 2006
TL;DR: This paper identifies research directions in short-range acoustic communications, MAC, time synchronization, and localization protocols for high-latency acoustic networks, long-duration network sleeping, and application-level data scheduling for underwater sensor networks.
Abstract: This paper explores applications and challenges for underwater sensor networks. We highlight potential applications to off-shore oilfields for seismic monitoring, equipment monitoring, and underwater robotics. We identify research directions in short-range acoustic communications, MAC, time synchronization, and localization protocols for high-latency acoustic networks, long-duration network sleeping, and application-level data scheduling. We describe our preliminary design on short-range acoustic communication hardware, and summarize results of high-latency time synchronization

994 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
79% related
Wireless
133.4K papers, 1.9M citations
79% related
Communication channel
137.4K papers, 1.7M citations
78% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
77% related
Wireless network
122.5K papers, 2.1M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023206
2022497
2021303
2020352
2019411
2018363