scispace - formally typeset
Search or ask a question
Topic

Universal motor

About: Universal motor is a research topic. Over the lifetime, 7283 publications have been published within this topic receiving 95210 citations. The topic is also known as: 2 Phase Half Wave Motor.


Papers
More filters
Book
09 Mar 1990
TL;DR: In this paper, the authors describe the motion of a drive with Lumped Inertia and two Axes Drive in Polar Coordinates, and the integration of the simplified Equation of Motion.
Abstract: 1. Elementary Principles of Mechanics.- 1.1 Newtons Law.- 1.2 Moment of Inertia.- 1.3 Effect of Gearing.- 1.4 Power and Energy.- 1.5 Experimental Determination of Inertia.- 2. Dynamics of a Mechanical Drive.- 2.1 Equations Describing the Motion of a Drive with Lumped Inertia.- 2.2 Two Axes Drive in Polar Coordinates.- 2.3 Steady State Characteristics of Motors and Loads.- 2.4 Stable and Unstable Operating Points.- 3. Integration of the Simplified Equation of Motion.- 3.1 Solution of the Linearised Equation.- 3.1.1 Start of a Motor with Shunt-type Characteristic at No-load.- 3.1.2 Starting the Motor with a Load Torque Proportional to Speed.- 3.1.3 Loading Transient of the Motor Initially Running at No-load Speed.- 3.1.4 Starting of a DC Motor by Sequentially Short-circuiting Starting Resistors.- 3.2 Analytical Solution of Nonlinear Differential Equation.- 3.3 Numerical and Graphical Integration.- 4. Thermal Effects in Electrical Machines.- 4.1 Power Losses and Temperature Restrictions.- 4.2 Heating of a Homogeneous Body.- 4.3 Different Modes of Operation.- 4.3.1 Continuous Duty.- 4.3.2 Short Time Intermittent Duty.- 4.3.3 Periodic intermittent duty.- 5. Separately Excited DC Machine.- 5.1 Introduction.- 5.2 Mathematical Model of the DC Machine.- 5.3 Steady State Characteristics with Armature and Field Control.- 5.3.1 Armature Control.- 5.3.2 Field Control.- 5.3.3 Combined Armature and Field Control.- 5.4 Dynamic Behaviour of DC Motor with Constant Flux.- 6. DC Motor with Series Field Winding.- 6.1 Block Diagram of a Series-wound Motor.- 6.2 Steady State Characteristics.- 7. Control of a Separately Excited DC Machine.- 7.1 Introduction.- 7.2 Cascade Control of DC Motor in the Armature Control Region.- 7.3 Cascade Control of DC Motor in the Field-weakening Region.- 7.4 Supplying a DC Motor from a Rotating Generator.- 8. Static Converter as a Power Actuator for DC Drives.- 8.1 Electronic Switching Devices.- 8.2 Line-commutated Converter in Single-phase Bridge Connection.- 8.3 Line-commutated Converter in Three-phase Bridge Connection.- 8.4 Line-commutated Converters with Reduced Reactive Power.- 8.5 Control Loop Containing an Electronic Power Converter.- 9. Control of Converter-supplied DC Drives.- 9.1 DC Drive with Line-commutated Converter.- 9.2 DC Drives with Force-commutated Converters.- 10. Symmetrical Three-Phase AC Machines.- 10.1 Mathematical Model of a General AC Machine.- 10.2 Induction Motor with Sinusoidal Symmetrical Voltages in Steady State.- 10.2.1 Stator Current, Current Locus.- 10.2.2 Steady State Torque, Efficiency.- 10.2.3 Comparison with Practical Motor Designs.- 10.2.4 Starting of the Induction Motor.- 10.3 Induction Motor with Impressed Voltages of Arbitrary Wave- forms.- 10.4 Induction Motor with Unsymmetrical Line Voltages in Steady State.- 10.4.1 Symmetrical Components.- 10.4.2 Single-phase Induction Motor.- 10.4.3 Single-phase Electric Brake for AC Crane-Drives.- 10.4.4 Unsymmetrical Starting Circuit for Induction Motor.- 11. Power Supplies for Adjustable Speed AC Drives.- 11.1 Pulse width modulated (PWM) Voltage Source Transistor Converter (IGBT).- 11.2 Voltage Source PWM Thyristor Converter.- 11.3 Current Source Thyristor Converters.- 11.4 Converter Without DC Link (Cycloconverter).- 12. Control of Induction Motor Drives.- 12.1 Control of Induction Motor Based on Steady State Machine Model.- 12.2 Rotor Flux Orientated Control of Current-fed Induction Motor.- 12.2.1 Principle of Field Orientation.- 12.2.2 Acquisition of Flux Signals.- 12.2.3 Effects of Residual Lag of the Current Control Loops.- 12.2.4 Digital Signal Processing.- 12.2.5 Experimental Results.- 12.2.6 Effects of a Detuned Flux Model.- 12.3 Control of Voltage-fed Induction Motor.- 12.4 Field Orientated Control of Induction Motor with a Current Source Converter.- 12.5 Control of an Induction Motor Without a Mechanical Sensor.- 12.5.1 Machine Model in Stator Flux Coordinates.- 12.5.2 Example of an "Encoderless Control".- 12.5.3 Simulation and Experimental Results.- 12.6 Control of an Induction Motor Using a Combined Flux Model.- 13. Induction Motor Drive with Reduced Speed Range.- 13.1 Doubly-fed Induction Machine with Constant Stator Frequency and Field-orientated Rotor Current.- 13.2 Control of a Line-side Voltage Source Converter as a Reactive Power Compensator.- 13.3 Wound-Rotor Induction with Slip-Power Recovery.- 14. Variable Frequency Synchronous Motor Drives.- 14.1 Control of Synchronous Motors with PM Excitation.- 14.2 Synchronous Motor with Field- and Damper-Windings.- 14.3 Synchronous Motor with Load-commutated Inverter (LCI- Drive).- 15. Some Applications of Controlled Electrical Drives.- 15.1 Speed Controlled Drives.- 15.2 Lineax Position Control.- 15.3 Lineax Position Control with Moving Reference Point.- 15.4 Time-optimal Position Control with Fixed Reference Point.- 15.5 Time-optimal Position Control with Moving Reference Point.

2,882 citations

Patent
20 Feb 2007
TL;DR: In this article, a permanent magnet, DC motor especially well adapted for use in power tools, and particularly hand-held, battery-powered power tools is described, with two sets of armature coils coupled to separate sets of commutator bars on an armature.
Abstract: A permanent magnet, DC motor especially well adapted for use in power tools, and particularly hand-held, battery powered power tools. The motor includes two sets of armature coils, with each set of coils being coupled to separate sets of commutator bars on an armature. Separate pairs of brushes are used to interface with the two sets of commutator bars. A switching subsystem is controlled either manually by a user engageable switch or automatically by a controller, to connect the two sets of coils in either series or parallel configurations. The series configuration provides a greater efficiency, but with a lower power output than the parallel connection. The parallel connection provides a greater maximum power output from the motor. Thus, the operating characteristics of the tool can be tailored to better meet the needs of a work task, and in a manner than makes most efficient use of available battery power.

748 citations

Patent
16 Apr 2013
TL;DR: In this paper, a post-termination braking of an electrical motor was proposed to counteract an inertia-induced over-stroke characteristic of the motor, drive train, and/or actuation assembly after powered operation by shortcircuiting the still-spinning motor to create an electrically generated magnetic field in opposition to the permanent magnetic field.
Abstract: An electrically powered surgical instrument includes a surgical end effector having a surgical procedure effecting actuation assembly. A handle is coupled with the end effector. An electric motor is disposed within a shell of the handle and has power terminals and a drive train actuating the assembly when the motor is supplied with power. A break-before-make power supply switch at the handle selectively controls supply of power to the motor. A post-termination braking circuit electrically short-circuits the power terminals when the switch does not supply power to the motor. A method for post-termination braking of an electrical motor utilizes the permanent magnetic field of the motor to counteract an inertia-induced over-stroke characteristic of the motor, drive train, and/or actuation assembly after powered operation by short-circuiting the still-spinning motor to create an electrically generated magnetic field in opposition to the permanent magnetic field upon ceasing supply of power to the motor.

647 citations

Patent
26 Feb 2001
TL;DR: In this paper, a method of increasing the power output of existing permanent magnet motors along with apparatus is disclosed, which is achieved by more completely utilizing the magnetic field of motor permanent magnets during running.
Abstract: A method of increasing the power output of existing permanent magnet motors along with apparatus is disclosed. Increased power output is achieved by more completely utilizing the magnetic field of motor permanent magnets during running. The apparatus is external to the motor and therefore eliminates the need for modifications to the motor itself. The method involves providing a source of power to a permanent magnet motor which is capable of demagnetizing the motor permanent magnets at stall, and reducing the power at start up to a level sufficient to prevent demagnetization. Full power to the motor is provided when the motor speed reaches a level sufficient to prevent demagnetization of the permanent magnets.

626 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated AC induction motor shaft voltage problems, current flow through motor bearings and electric discharge current problems within bearings when operated under both pure sinewave and pulse width modulated (PWM) inverter sources.
Abstract: This paper investigates AC induction motor shaft voltage problems, current flow through motor bearings and electric discharge current problems within bearings when operated under both pure sinewave and pulse width modulated (PWM) inverter sources. Experience suggests that PWM voltage sources with steep wavefronts especially increase the magnitude of the above electrical problems, leading to motor bearing material erosion and early mechanical failure. Previous literature suggests that shaft voltage-bearing current problems under 60 Hz sinewave operation are predominantly electromagnetically induced. It is proposed that under PWM operation these same problems are now predominantly an electrostatic phenomenon. A system model to describe this phenomenon is characterized and developed. Construction and test of a new electrostatic shielded induction motor (ESIM) verifies this model and is also a possible solution to the bearing current problem under PWM operation.

616 citations


Network Information
Related Topics (5)
Stator
112.5K papers, 814.8K citations
88% related
AC power
80.9K papers, 880.8K citations
85% related
Electric power system
133K papers, 1.7M citations
83% related
Fault (power engineering)
119.7K papers, 981.6K citations
83% related
Voltage
296.3K papers, 1.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202252
20216
202011
201911
201830