scispace - formally typeset
Search or ask a question

Showing papers on "Unsupervised learning published in 2012"


Proceedings ArticleDOI
16 Jun 2012
TL;DR: This paper proposes a new kernel-based method that takes advantage of low-dimensional structures that are intrinsic to many vision datasets, and introduces a metric that reliably measures the adaptability between a pair of source and target domains.
Abstract: In real-world applications of visual recognition, many factors — such as pose, illumination, or image quality — can cause a significant mismatch between the source domain on which classifiers are trained and the target domain to which those classifiers are applied. As such, the classifiers often perform poorly on the target domain. Domain adaptation techniques aim to correct the mismatch. Existing approaches have concentrated on learning feature representations that are invariant across domains, and they often do not directly exploit low-dimensional structures that are intrinsic to many vision datasets. In this paper, we propose a new kernel-based method that takes advantage of such structures. Our geodesic flow kernel models domain shift by integrating an infinite number of subspaces that characterize changes in geometric and statistical properties from the source to the target domain. Our approach is computationally advantageous, automatically inferring important algorithmic parameters without requiring extensive cross-validation or labeled data from either domain. We also introduce a metric that reliably measures the adaptability between a pair of source and target domains. For a given target domain and several source domains, the metric can be used to automatically select the optimal source domain to adapt and avoid less desirable ones. Empirical studies on standard datasets demonstrate the advantages of our approach over competing methods.

2,154 citations


Proceedings Article
27 Jun 2012
TL;DR: Why unsupervised pre-training of representations can be useful, and how it can be exploited in the transfer learning scenario, where the authors care about predictions on examples that are not from the same distribution as the training distribution.
Abstract: Deep learning algorithms seek to exploit the unknown structure in the input distribution in order to discover good representations, often at multiple levels, with higher-level learned features defined in terms of lower-level features. The objective is to make these higher-level representations more abstract, with their individual features more invariant to most of the variations that are typically present in the training distribution, while collectively preserving as much as possible of the information in the input. Ideally, we would like these representations to disentangle the unknown factors of variation that underlie the training distribution. Such unsupervised learning of representations can be exploited usefully under the hypothesis that the input distribution P(x) is structurally related to some task of interest, say predicting P(y/x). This paper focuses on the context of the Unsupervised and Transfer Learning Challenge, on why unsupervised pre-training of representations can be useful, and how it can be exploited in the transfer learning scenario, where we care about predictions on examples that are not from the same distribution as the training distribution.

925 citations


Proceedings Article
01 Nov 2012
TL;DR: This paper combines the representational power of large, multilayer neural networks together with recent developments in unsupervised feature learning, which allows them to use a common framework to train highly-accurate text detector and character recognizer modules.
Abstract: Full end-to-end text recognition in natural images is a challenging problem that has received much attention recently. Traditional systems in this area have relied on elaborate models incorporating carefully hand-engineered features or large amounts of prior knowledge. In this paper, we take a different route and combine the representational power of large, multilayer neural networks together with recent developments in unsupervised feature learning, which allows us to use a common framework to train highly-accurate text detector and character recognizer modules. Then, using only simple off-the-shelf methods, we integrate these two modules into a full end-to-end, lexicon-driven, scene text recognition system that achieves state-of-the-art performance on standard benchmarks, namely Street View Text and ICDAR 2003.

900 citations


Book
14 Mar 2012
TL;DR: A unified, efficient model of random decision forests which can be applied to a number of machine learning, computer vision, and medical image analysis tasks is presented and relative advantages and disadvantages discussed.
Abstract: This review presents a unified, efficient model of random decision forests which can be applied to a number of machine learning, computer vision, and medical image analysis tasks. Our model extends existing forest-based techniques as it unifies classification, regression, density estimation, manifold learning, semi-supervised learning, and active learning under the same decision forest framework. This gives us the opportunity to write and optimize the core implementation only once, with application to many diverse tasks. The proposed model may be used both in a discriminative or generative way and may be applied to discrete or continuous, labeled or unlabeled data. The main contributions of this review are: (1) Proposing a unified, probabilistic and efficient model for a variety of learning tasks; (2) Demonstrating margin-maximizing properties of classification forests; (3) Discussing probabilistic regression forests in comparison with other nonlinear regression algorithms; (4) Introducing density forests for estimating probability density functions; (5) Proposing an efficient algorithm for sampling from a density forest; (6) Introducing manifold forests for nonlinear dimensionality reduction; (7) Proposing new algorithms for transductive learning and active learning. Finally, we discuss how alternatives such as random ferns and extremely randomized trees stem from our more general forest model. This document is directed at both students who wish to learn the basics of decision forests, as well as researchers interested in the new contributions. It presents both fundamental and novel concepts in a structured way, with many illustrative examples and real-world applications. Thorough comparisons with state-of-the-art algorithms such as support vector machines, boosting and Gaussian processes are presented and relative advantages and disadvantages discussed. The many synthetic examples and existing commercial applications demonstrate the validity of the proposed model and its flexibility.

870 citations


Proceedings Article
26 Jun 2012
TL;DR: In this paper, a 9-layered locally connected sparse autoencoder with pooling and local contrast normalization was used to learn high-level, class-specific feature detectors from only unlabeled data.
Abstract: We consider the problem of building high-level, class-specific feature detectors from only unlabeled data. For example, is it possible to learn a face detector using only unlabeled images using unlabeled images? To answer this, we train a 9-layered locally connected sparse autoencoder with pooling and local contrast normalization on a large dataset of images (the model has 1 billion connections, the dataset has 10 million 200×200 pixel images downloaded from the Internet). We train this network using model parallelism and asynchronous SGD on a cluster with 1,000 machines (16,000 cores) for three days. Contrary to what appears to be a widely-held intuition, our experimental results reveal that it is possible to train a face detector without having to label images as containing a face or not. Control experiments show that this feature detector is robust not only to translation but also to scaling and out-of-plane rotation. We also find that the same network is sensitive to other high-level concepts such as cat faces and human bodies. Starting with these learned features, we trained our network to obtain 15.8% accuracy in recognizing 20,000 object categories from ImageNet, a leap of 70% relative improvement over the previous state-of-the-art.

786 citations


Proceedings ArticleDOI
16 Jun 2012
TL;DR: This paper uses raw image patches extracted from a set of unlabeled images to learn a dictionary in an unsupervised manner and uses soft-assignment coding with max pooling to obtain effective image representations for quality estimation.
Abstract: In this paper, we present an efficient general-purpose objective no-reference (NR) image quality assessment (IQA) framework based on unsupervised feature learning. The goal is to build a computational model to automatically predict human perceived image quality without a reference image and without knowing the distortion present in the image. Previous approaches for this problem typically rely on hand-crafted features which are carefully designed based on prior knowledge. In contrast, we use raw-image-patches extracted from a set of unlabeled images to learn a dictionary in an unsupervised manner. We use soft-assignment coding with max pooling to obtain effective image representations for quality estimation. The proposed algorithm is very computationally appealing, using raw image patches as local descriptors and using soft-assignment for encoding. Furthermore, unlike previous methods, our unsupervised feature learning strategy enables our method to adapt to different domains. CORNIA (Codebook Representation for No-Reference Image Assessment) is tested on LIVE database and shown to perform statistically better than the full-reference quality measure, structural similarity index (SSIM) and is shown to be comparable to state-of-the-art general purpose NR-IQA algorithms.

682 citations


Proceedings Article
27 Jun 2012
TL;DR: In this article, the authors present a general mathematical framework for the study of both linear and non-linear autoencoders, including the Boolean autoencoder, which is equivalent to a clustering problem that can be solved in polynomial time when the number of clusters is small and becomes NP complete when the size of the clusters is large.
Abstract: Autoencoders play a fundamental role in unsupervised learning and in deep architectures for transfer learning and other tasks. In spite of their fundamental role, only linear autoencoders over the real numbers have been solved analytically. Here we present a general mathematical framework for the study of both linear and non-linear autoencoders. The framework allows one to derive an analytical treatment for the most non-linear autoencoder, the Boolean autoencoder. Learning in the Boolean autoencoder is equivalent to a clustering problem that can be solved in polynomial time when the number of clusters is small and becomes NP complete when the number of clusters is large. The framework sheds light on the different kinds of autoencoders, their learning complexity, their horizontal and vertical composability in deep architectures, their critical points, and their fundamental connections to clustering, Hebbian learning, and information theory.

663 citations


Journal ArticleDOI
01 Jun 2012-Genomics
TL;DR: This article systematically review the applications and recent progresses of RF for genomic data, including prediction and classification, variable selection, pathway analysis, genetic association and epistasis detection, and unsupervised learning.

625 citations


BookDOI
01 Jan 2012

620 citations


Proceedings ArticleDOI
12 Aug 2012
TL;DR: This paper proposes RolX (Role eXtraction), a scalable (linear in the number of edges), unsupervised learning approach for automatically extracting structural roles from general network data, and compares network role discovery with network community discovery.
Abstract: Given a network, intuitively two nodes belong to the same role if they have similar structural behavior. Roles should be automatically determined from the data, and could be, for example, "clique-members," "periphery-nodes," etc. Roles enable numerous novel and useful network-mining tasks, such as sense-making, searching for similar nodes, and node classification. This paper addresses the question: Given a graph, how can we automatically discover roles for nodes? We propose RolX (Role eXtraction), a scalable (linear in the number of edges), unsupervised learning approach for automatically extracting structural roles from general network data. We demonstrate the effectiveness of RolX on several network-mining tasks: from exploratory data analysis to network transfer learning. Moreover, we compare network role discovery with network community discovery. We highlight fundamental differences between the two (e.g., roles generalize across disconnected networks, communities do not); and show that the two approaches are complimentary in nature.

447 citations


Book
01 Jan 2012
TL;DR: You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification in code you can reuse.
Abstract: SummaryMachine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification. About the BookA machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interesting or useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many.Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification.Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful.Purchase includes free PDF, ePub, and Kindle eBooks downloadable at manning.com. What's InsideA no-nonsense introduction Examples showing common ML tasks Everyday data analysis Implementing classic algorithms like Apriori and Adaboos=================================== Table of ContentsPART 1 CLASSIFICATION Machine learning basics Classifying with k-Nearest Neighbors Splitting datasets one feature at a time: decision trees Classifying with probability theory: nave Bayes Logistic regression Support vector machines Improving classification with the AdaBoost meta algorithm PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION Predicting numeric values: regression Tree-based regression PART 3 UNSUPERVISED LEARNING Grouping unlabeled items using k-means clustering Association analysis with the Apriori algorithm Efficiently finding frequent itemsets with FP-growth PART 4 ADDITIONAL TOOLS Using principal component analysis to simplify data Simplifying data with the singular value decomposition Big data and MapReduce

Proceedings ArticleDOI
16 Jun 2012
TL;DR: It is shown that a recognition system using only representations obtained from deep learning can achieve comparable accuracy with a system using a combination of hand-crafted image descriptors, and empirically show that learning weights not only is necessary for obtaining good multilayer representations, but also provides robustness to the choice of the network architecture parameters.
Abstract: Most modern face recognition systems rely on a feature representation given by a hand-crafted image descriptor, such as Local Binary Patterns (LBP), and achieve improved performance by combining several such representations. In this paper, we propose deep learning as a natural source for obtaining additional, complementary representations. To learn features in high-resolution images, we make use of convolutional deep belief networks. Moreover, to take advantage of global structure in an object class, we develop local convolutional restricted Boltzmann machines, a novel convolutional learning model that exploits the global structure by not assuming stationarity of features across the image, while maintaining scalability and robustness to small misalignments. We also present a novel application of deep learning to descriptors other than pixel intensity values, such as LBP. In addition, we compare performance of networks trained using unsupervised learning against networks with random filters, and empirically show that learning weights not only is necessary for obtaining good multilayer representations, but also provides robustness to the choice of the network architecture parameters. Finally, we show that a recognition system using only representations obtained from deep learning can achieve comparable accuracy with a system using a combination of hand-crafted image descriptors. Moreover, by combining these representations, we achieve state-of-the-art results on a real-world face verification database.

Book
30 Mar 2012
TL;DR: This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs and outputs change but the conditional distribution of outputs is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non- stationarity.
Abstract: As the power of computing has grown over the past few decades, the field of machine learning has advanced rapidly in both theory and practice. Machine learning methods are usually based on the assumption that the data generation mechanism does not change over time. Yet real-world applications of machine learning, including image recognition, natural language processing, speech recognition, robot control, and bioinformatics, often violate this common assumption. Dealing with non-stationarity is one of modern machine learning's greatest challenges. This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) change but the conditional distribution of outputs (answers) is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non-stationarity. After reviewing the state-of-the-art research in the field, the authors discuss topics that include learning under covariate shift, model selection, importance estimation, and active learning. They describe such real world applications of covariate shift adaption as brain-computer interface, speaker identification, and age prediction from facial images. With this book, they aim to encourage future research in machine learning, statistics, and engineering that strives to create truly autonomous learning machines able to learn under non-stationarity.

Proceedings ArticleDOI
08 Feb 2012
TL;DR: The interplay between people's location, interactions, and their social ties within a large real-world dataset is explored, and Flap, a system that solves two intimately related tasks: link and location prediction in online social networks, is presented and evaluated.
Abstract: Location plays an essential role in our lives, bridging our online and offline worlds. This paper explores the interplay between people's location, interactions, and their social ties within a large real-world dataset. We present and evaluate Flap, a system that solves two intimately related tasks: link and location prediction in online social networks. For link prediction, Flap infers social ties by considering patterns in friendship formation, the content of people's messages, and user location. We show that while each component is a weak predictor of friendship alone, combining them results in a strong model, accurately identifying the majority of friendships. For location prediction, Flap implements a scalable probabilistic model of human mobility, where we treat users with known GPS positions as noisy sensors of the location of their friends. We explore supervised and unsupervised learning scenarios, and focus on the efficiency of both learning and inference. We evaluate Flap on a large sample of highly active users from two distinct geographical areas and show that it (1) reconstructs the entire friendship graph with high accuracy even when no edges are given; and (2) infers people's fine-grained location, even when they keep their data private and we can only access the location of their friends. Our models significantly outperform current comparable approaches to either task.

Journal ArticleDOI
TL;DR: In this paper, a geometric analysis of sparse subspace clustering (SSC) is presented, showing that SSC can recover multiple subspaces, each of dimension comparable to the ambient dimension.
Abstract: This paper considers the problem of clustering a collection of unlabeled data points assumed to lie near a union of lower dimensional planes. As is common in computer vision or unsupervised learning applications, we do not know in advance how many subspaces there are nor do we have any information about their dimensions. We develop a novel geometric analysis of an algorithm named sparse subspace clustering (SSC) [11], which signicantly broadens the range of problems where it is provably eective. For instance, we show that SSC can recover multiple subspaces, each of dimension comparable to the ambient dimension. We also prove that SSC can correctly cluster data points even when the subspaces of interest intersect. Further, we develop an extension of SSC that succeeds when the data set is corrupted with possibly overwhelmingly many outliers. Underlying our analysis are clear geometric insights, which may bear on other sparse recovery problems. A numerical study complements our theoretical analysis and demonstrates the eectiveness of these methods.

Posted Content
TL;DR: This paper proposes a regularization formulation for learning the relationships between tasks in multi-task learning, called MTRL, which can also describe negative task correlation and identify outlier tasks based on the same underlying principle.
Abstract: Multi-task learning is a learning paradigm which seeks to improve the generalization performance of a learning task with the help of some other related tasks. In this paper, we propose a regularization formulation for learning the relationships between tasks in multi-task learning. This formulation can be viewed as a novel generalization of the regularization framework for single-task learning. Besides modeling positive task correlation, our method, called multi-task relationship learning (MTRL), can also describe negative task correlation and identify outlier tasks based on the same underlying principle. Under this regularization framework, the objective function of MTRL is convex. For efficiency, we use an alternating method to learn the optimal model parameters for each task as well as the relationships between tasks. We study MTRL in the symmetric multi-task learning setting and then generalize it to the asymmetric setting as well. We also study the relationships between MTRL and some existing multi-task learning methods. Experiments conducted on a toy problem as well as several benchmark data sets demonstrate the effectiveness of MTRL.

Proceedings Article
16 Jun 2012
TL;DR: In this article, a method of moments approach is proposed for parameter estimation for a broad class of high-dimensional mixture models with many components, including multi-view mixtures of Gaussians and hidden Markov models.
Abstract: Mixture models are a fundamental tool in applied statistics and machine learning for treating data taken from multiple subpopulations. The current practice for estimating the parameters of such models relies on local search heuristics (e.g., the EM algorithm) which are prone to failure, and existing consistent methods are unfavorable due to their high computational and sample complexity which typically scale exponentially with the number of mixture components. This work develops an ecient method of moments approach to parameter estimation for a broad class of high-dimensional mixture models with many components, including multi-view mixtures of Gaussians (such as mixtures of axis-aligned Gaussians) and hidden Markov models. The new method leads to rigorous unsupervised learning results for mixture models that were not achieved by previous works; and, because of its simplicity, it oers a viable alternative to EM for practical deployment.

Journal ArticleDOI
TL;DR: In this article, the authors consider situations where they are not only interested in sparsity, but where some structural prior knowledge is available as well, and show that the $\ell_1$-norm can then be extended to structured norms built on either disjoint or overlapping groups of variables.
Abstract: Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. While naturally cast as a combinatorial optimization problem, variable or feature selection admits a convex relaxation through the regularization by the $\ell_1$-norm. In this paper, we consider situations where we are not only interested in sparsity, but where some structural prior knowledge is available as well. We show that the $\ell_1$-norm can then be extended to structured norms built on either disjoint or overlapping groups of variables, leading to a flexible framework that can deal with various structures. We present applications to unsupervised learning, for structured sparse principal component analysis and hierarchical dictionary learning, and to supervised learning in the context of non-linear variable selection.

Proceedings Article
03 Dec 2012
TL;DR: This paper incorporates deep learning into the congealing alignment framework, and modify the learning algorithm for the restricted Boltzmann machine by incorporating a group sparsity penalty, leading to a topographic organization of the learned filters and improving subsequent alignment results.
Abstract: Unsupervised joint alignment of images has been demonstrated to improve performance on recognition tasks such as face verification. Such alignment reduces undesired variability due to factors such as pose, while only requiring weak supervision in the form of poorly aligned examples. However, prior work on unsupervised alignment of complex, real-world images has required the careful selection of feature representation based on hand-crafted image descriptors, in order to achieve an appropriate, smooth optimization landscape. In this paper, we instead propose a novel combination of unsupervised joint alignment with unsupervised feature learning. Specifically, we incorporate deep learning into the congealing alignment framework. Through deep learning, we obtain features that can represent the image at differing resolutions based on network depth, and that are tuned to the statistics of the specific data being aligned. In addition, we modify the learning algorithm for the restricted Boltzmann machine by incorporating a group sparsity penalty, leading to a topographic organization of the learned filters and improving subsequent alignment results. We apply our method to the Labeled Faces in the Wild database (LFW). Using the aligned images produced by our proposed unsupervised algorithm, we achieve higher accuracy in face verification compared to prior work in both unsupervised and supervised alignment. We also match the accuracy for the best available commercial method.

Book ChapterDOI
01 Jan 2012
TL;DR: This text introduces the intuitions and concepts behind Markov decision processes and two classes of algorithms for computing optimal behaviors: reinforcement learning and dynamic programming, and surveys efficient extensions of the foundational algorithms.
Abstract: Situated in between supervised learning and unsupervised learning, the paradigm of reinforcement learning deals with learning in sequential decision making problems in which there is limited feedback. This text introduces the intuitions and concepts behind Markov decision processes and two classes of algorithms for computing optimal behaviors: reinforcement learning and dynamic programming. First the formal framework of Markov decision process is defined, accompanied by the definition of value functions and policies. The main part of this text deals with introducing foundational classes of algorithms for learning optimal behaviors, based on various definitions of optimality with respect to the goal of learning sequential decisions. Additionally, it surveys efficient extensions of the foundational algorithms, differing mainly in the way feedback given by the environment is used to speed up learning, and in the way they concentrate on relevant parts of the problem. For both model-based and model-free settings these efficient extensions have shown useful in scaling up to larger problems.

Book
01 Feb 2012
TL;DR: A comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting, and density ratio fitting as well as describing how these can be applied to machine learning can be found in this paper.
Abstract: Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as non-stationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification, and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting, and density ratio fitting as well as describing how these can be applied to machine learning. The book also provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning.

Book ChapterDOI
01 Jan 2012
TL;DR: This chapter provides a formalization of the general transfer problem, the main settings which have been investigated so far, and the most important approaches to transfer in reinforcement learning.
Abstract: Transfer in reinforcement learning is a novel research area that focuses on the development of methods to transfer knowledge from a set of source tasks to a target task. Whenever the tasks are similar, the transferred knowledge can be used by a learning algorithm to solve the target task and significantly improve its performance (e.g., by reducing the number of samples needed to achieve a nearly optimal performance). In this chapter we provide a formalization of the general transfer problem, we identify the main settings which have been investigated so far, and we review the most important approaches to transfer in reinforcement learning.

Journal ArticleDOI
TL;DR: In this paper, the authors prove that under a natural separation condition (bounds on the smallest singular value of the HMM parameters), there is an efficient and provably correct algorithm for learning hidden Markov models.


Journal ArticleDOI
TL;DR: This paper shows how to perform parameter learning in an unsupervised fashion, that is when no correct correspondences between graphs are given during training, and reveals that unsuper supervised learning compares favorably to the supervised case, both in terms of efficiency and quality.
Abstract: Graph matching is an essential problem in computer vision that has been successfully applied to 2D and 3D feature matching and object recognition. Despite its importance, little has been published on learning the parameters that control graph matching, even though learning has been shown to be vital for improving the matching rate. In this paper we show how to perform parameter learning in an unsupervised fashion, that is when no correct correspondences between graphs are given during training. Our experiments reveal that unsupervised learning compares favorably to the supervised case, both in terms of efficiency and quality, while avoiding the tedious manual labeling of ground truth correspondences. We verify experimentally that our learning method can improve the performance of several state-of-the art graph matching algorithms. We also show that a similar method can be successfully applied to parameter learning for graphical models and demonstrate its effectiveness empirically.

Journal ArticleDOI
TL;DR: The ability of UNIDS to detect unknown attacks is shown, comparing its performance against traditional misuse-detection-based NIDSs, and the supremacy of the outliers detection approach with respect to different previously used unsupervised detection techniques is evidence.

Proceedings ArticleDOI
27 Jun 2012
TL;DR: The actor-critic algorithm is applied to learn on a robotic platform with a fast sensorimotor cycle and constitutes an important step towards practical real-time learning control with continuous action.
Abstract: Reinforcement learning methods are often considered as a potential solution to enable a robot to adapt to changes in real time to an unpredictable environment. However, with continuous action, only a few existing algorithms are practical for real-time learning. In such a setting, most effective methods have used a parameterized policy structure, often with a separate parameterized value function. The goal of this paper is to assess such actor-critic methods to form a fully specified practical algorithm. Our specific contributions include 1) developing the extension of existing incremental policy-gradient algorithms to use eligibility traces, 2) an empirical comparison of the resulting algorithms using continuous actions, 3) the evaluation of a gradient-scaling technique that can significantly improve performance. Finally, we apply our actor-critic algorithm to learn on a robotic platform with a fast sensorimotor cycle (10ms). Overall, these results constitute an important step towards practical real-time learning control with continuous action.

Proceedings ArticleDOI
14 May 2012
TL;DR: A new, learned, local feature descriptor for RGB-D images, the convolutional k-means descriptor, which automatically learns feature responses in the neighborhood of detected interest points and is able to combine all available information, such as color and depth into one, concise representation.
Abstract: In this work we address the problem of feature extraction for object recognition in the context of cameras providing RGB and depth information (RGB-D data). We consider this problem in a bag of features like setting and propose a new, learned, local feature descriptor for RGB-D images, the convolutional k-means descriptor. The descriptor is based on recent results from the machine learning community. It automatically learns feature responses in the neighborhood of detected interest points and is able to combine all available information, such as color and depth into one, concise representation. To demonstrate the strength of this approach we show its applicability to different recognition problems. We evaluate the quality of the descriptor on the RGB-D Object Dataset where it is competitive with previously published results and propose an embedding into an image processing pipeline for object recognition and pose estimation.

Proceedings Article
20 May 2012
TL;DR: This paper creates a navigator of the documents, allowing users to explore the hidden structure that a topic model discovers, and reveals meaningful patterns in a collection, helping end-users explore and understand its contents in new ways.
Abstract: Managing large collections of documents is an important problem for many areas of science, industry, and culture. Probabilistic topic modeling offers a promising solution. Topic modeling is an unsupervised machine learning method that learns the underlying themes in a large collection of otherwise unorganized documents. This discovered structure summarizes and organizes the documents. However, topic models are high-level statistical tools—a user must scrutinize numerical distributions to understand and explore their results. In this paper, we present a method for visualizing topic models. Our method creates a navigator of the documents, allowing users to explore the hidden structure that a topic model discovers. These browsing interfaces reveal meaningful patterns in a collection, helping end-users explore and understand its contents in new ways. We provide open source software of our method.

Proceedings ArticleDOI
Jimmy Lin1, Alek Kolcz1
20 May 2012
TL;DR: A case study of Twitter's integration of machine learning tools into its existing Hadoop-based, Pig-centric analytics platform to provide predictive analytics capabilities that incorporate machine learning, focused specifically on supervised classification.
Abstract: The success of data-driven solutions to difficult problems, along with the dropping costs of storing and processing massive amounts of data, has led to growing interest in large-scale machine learning. This paper presents a case study of Twitter's integration of machine learning tools into its existing Hadoop-based, Pig-centric analytics platform. We begin with an overview of this platform, which handles "traditional" data warehousing and business intelligence tasks for the organization. The core of this work lies in recent Pig extensions to provide predictive analytics capabilities that incorporate machine learning, focused specifically on supervised classification. In particular, we have identified stochastic gradient descent techniques for online learning and ensemble methods as being highly amenable to scaling out to large amounts of data. In our deployed solution, common machine learning tasks such as data sampling, feature generation, training, and testing can be accomplished directly in Pig, via carefully crafted loaders, storage functions, and user-defined functions. This means that machine learning is just another Pig script, which allows seamless integration with existing infrastructure for data management, scheduling, and monitoring in a production environment, as well as access to rich libraries of user-defined functions and the materialized output of other scripts.