scispace - formally typeset
Search or ask a question
Topic

Upsampling

About: Upsampling is a research topic. Over the lifetime, 2426 publications have been published within this topic receiving 57613 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a Feature Aligned Multi-Scale Convolutional Network (FA-MSCN) architecture for liver tumor detection based on whole slide images (WSI).

10 citations

Posted Content
TL;DR: Experimental results show that the PointAtrousGraph (PAG) outperform previous state-of-the-art methods on various 3D semantic perception applications.
Abstract: Motivated by the success of encoding multi-scale contextual information for image analysis, we propose our PointAtrousGraph (PAG) - a deep permutation-invariant hierarchical encoder-decoder for efficiently exploiting multi-scale edge features in point clouds. Our PAG is constructed by several novel modules, such as Point Atrous Convolution (PAC), Edge-preserved Pooling (EP) and Edge-preserved Unpooling (EU). Similar with atrous convolution, our PAC can effectively enlarge receptive fields of filters and thus densely learn multi-scale point features. Following the idea of non-overlapping max-pooling operations, we propose our EP to preserve critical edge features during subsampling. Correspondingly, our EU modules gradually recover spatial information for edge features. In addition, we introduce chained skip subsampling/upsampling modules that directly propagate edge features to the final stage. Particularly, our proposed auxiliary loss functions can further improve our performance. Experimental results show that our PAG outperform previous state-of-the-art methods on various 3D semantic perception applications.

10 citations

Proceedings ArticleDOI
30 Jun 2017
TL;DR: In this article, the hypercolumn feature maps are constructed by pyramid module in combination with the convolution layers of the base network and the learning rate after sampling is controlled by statistical process control of gradients in each layer.
Abstract: Semantic segmentation, like other fields of computer vision, has seen a remarkable performance advance by the use of deep convolution neural networks. However, considering that neighboring pixels are heavily dependent on each other, both learning and testing of these methods have a lot of redundant operations. To resolve this problem, the proposed network is trained and tested with only 0.37% of total pixels by superpixel-based sampling and largely reduced the complexity of upsampling calculation. The hypercolumn feature maps are constructed by pyramid module in combination with the convolution layers of the base network. Since the proposed method uses a very small number of sampled pixels, the end-to-end learning of the entire network is difficult with a common learning rate for all the layers. In order to resolve this problem, the learning rate after sampling is controlled by statistical process control (SPC) of gradients in each layer. The proposed method performs better than or equal to the conventional methods that use much more samples on Pascal Context, SUN-RGBD dataset.

10 citations

Proceedings ArticleDOI
TL;DR: In this article, a fully convolutional neural network architecture is proposed for voxel-wise semantic segmentation of infant brain MRI images at iso-intense stage, which can be easily extended for other segmentation tasks involving multi-modalities.
Abstract: We present a novel, parameter-efficient and practical fully convolutional neural network architecture, termed InfiNet, aimed at voxel-wise semantic segmentation of infant brain MRI images at iso-intense stage, which can be easily extended for other segmentation tasks involving multi-modalities. InfiNet consists of double encoder arms for T1 and T2 input scans that feed into a joint-decoder arm that terminates in the classification layer. The novelty of InfiNet lies in the manner in which the decoder upsamples lower resolution input feature map(s) from multiple encoder arms. Specifically, the pooled indices computed in the max-pooling layers of each of the encoder blocks are related to the corresponding decoder block to perform non-linear learning-free upsampling. The sparse maps are concatenated with intermediate encoder representations (skip connections) and convolved with trainable filters to produce dense feature maps. InfiNet is trained end-to-end to optimize for the Generalized Dice Loss, which is well-suited for high class imbalance. InfiNet achieves the whole-volume segmentation in under 50 seconds and we demonstrate competitive performance against multiple state-of-the art deep architectures and their multi-modal variants.

10 citations

Journal ArticleDOI
TL;DR: In this article, the multichannel interpolation (MCI) of a discrete signal is proposed to approximate non-bandlimited signals and its Hilbert transform, which can be applied to the single image super-resolution (SISR).

10 citations


Network Information
Related Topics (5)
Convolutional neural network
74.7K papers, 2M citations
90% related
Image segmentation
79.6K papers, 1.8M citations
90% related
Feature extraction
111.8K papers, 2.1M citations
89% related
Deep learning
79.8K papers, 2.1M citations
88% related
Feature (computer vision)
128.2K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023469
2022859
2021330
2020322
2019298
2018236