scispace - formally typeset
Search or ask a question
Topic

Upsampling

About: Upsampling is a research topic. Over the lifetime, 2426 publications have been published within this topic receiving 57613 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work outlines three approaches to decimate non-uniformly sampled signals, which are all based on interpolation, and computes an approximate Fourier transform, after which truncation and IFFT give the desired result.
Abstract: Decimating a uniformly sampled signal a factor D involves low-pass antialias filtering with normalized cutoff frequency 1/D followed by picking out every Dth sample. Alternatively, decimation can be done in the frequency domain using the fast Fourier transform (FFT) algorithm, after zero-padding the signal and truncating the FFT. We outline three approaches to decimate non-uniformly sampled signals, which are all based on interpolation. The interpolation is done in different domains, and the intersample behavior does not need to be known. The first one interpolates the signal to a uniformly sampling, after which standard decimation can be applied. The second one interpolates a continuous-time convolution integral, that implements the antialias filter, after which every Dth sample can be picked out. The third frequency domain approach computes an approximate Fourier transform, after which truncation and IFFT give the desired result. Simulations indicate that the second approach is particularly useful. A thorough analysis is therefore performed for this case, using the assumption that the non-uniformly distributed sampling instants are generated by a stochastic process.

10 citations

Proceedings ArticleDOI
01 Sep 2016
TL;DR: This work proposes a triangular mesh sparsification algorithm, which allows to trade off computational complexity with reconstruction quality and outperforms various state-of-the-art TFI methods in terms of quality of the interpolated frames, while having the lowest processing times.
Abstract: This paper continues our work on occlusion-aware temporal frame interpolation (TFI) that employs piecewise-smooth motion with sharp motion boundaries. In this work, we propose a triangular mesh sparsification algorithm, which allows to trade off computational complexity with reconstruction quality. Furthermore, we propose a method to create a background motion layer in regions that get disoccluded between the two reference frames, which is used to get temporally consistent interpolations among frames interpolated between the two reference frames. Experimental results on a large data set show the proposed mesh sparsification is able to reduce the processing time by 75%, with a minor drop in PSNR of 0.02 dB. The proposed TFI scheme outperforms various state-of-the-art TFI methods in terms of quality of the interpolated frames, while having the lowest processing times. Further experiments on challenging synthetic sequences highlight the temporal consistency in traditionally difficult regions of disocclusion.

10 citations

Journal ArticleDOI
TL;DR: A novel Efficient Dual-branch Bottleneck Network (EDBNet) is investigated to perform real-time semantic segmentation tasks on mobile robot systems based on CCD camera to remedy the non-linear connection between the input and the output.
Abstract: This paper investigates a novel Efficient Dual-branch Bottleneck Network (EDBNet) to perform real-time semantic segmentation tasks on mobile robot systems based on CCD camera. To remedy the non-linear connection between the input and the output, a small-scale and shallow module called the Efficient Dual-branch Bottleneck (EDB) module is established. The EDB unit consists of two branches with different dilation rates, and each branch widens the non-linear layers. This module helps to simultaneously extract local and situational information while maintaining a minimal set of parameters. Moreover, the EDBNet, which is built on the EDB unit, is intended to enhance accuracy, inference speed, and parameter flexibility. It employs dilated convolution with a high dilation rate to increase the receptive field and three downsampling procedures to maintain feature maps with superior spatial resolution. Additionally, the EDBNet uses effective convolutions and compresses the network layer to reduce computational complexity, which is an efficient technique to capture a great deal of information while keeping a rapid computing speed. Finally, using the CamVid and Cityscapes datasets, we obtain Mean Intersection over Union (MIoU) results of 68.58 percent and 71.21 percent, respectively, with just 1.03 million parameters and faster performance on a single GTX 1070Ti card. These results also demonstrate the effectiveness of the practical mobile robot system.

10 citations

Posted Content
TL;DR: Experimental results show that the proposed Cross-MPI framework can achieve superior performance against the existing RefSR methods and is a real fit for actual multiscale camera systems even with large-scale differences.
Abstract: Various combinations of cameras enrich computational photography, among which reference-based superresolution (RefSR) plays a critical role in multiscale imaging systems. However, existing RefSR approaches fail to accomplish high-fidelity super-resolution under a large resolution gap, e.g., 8x upscaling, due to the lower consideration of the underlying scene structure. In this paper, we aim to solve the RefSR problem in actual multiscale camera systems inspired by multiplane image (MPI) representation. Specifically, we propose Cross-MPI, an end-to-end RefSR network composed of a novel plane-aware attention-based MPI mechanism, a multiscale guided upsampling module as well as a super-resolution (SR) synthesis and fusion module. Instead of using a direct and exhaustive matching between the cross-scale stereo, the proposed plane-aware attention mechanism fully utilizes the concealed scene structure for efficient attention-based correspondence searching. Further combined with a gentle coarse-to-fine guided upsampling strategy, the proposed Cross-MPI can achieve a robust and accurate detail transmission. Experimental results on both digitally synthesized and optical zoom cross-scale data show that the Cross-MPI framework can achieve superior performance against the existing RefSR methods and is a real fit for actual multiscale camera systems even with large-scale differences.

10 citations

Proceedings ArticleDOI
01 Jun 2021
TL;DR: In this paper, an efficient solution for Space-time Super-Resolution, aiming to generate high-resolution Slow-motion videos from Low Resolution and Low Frame rate videos, is proposed.
Abstract: This paper explores an efficient solution for Space-time Super-Resolution, aiming to generate High-resolution Slow-motion videos from Low Resolution and Low Frame rate videos. A simplistic solution is the sequential running of Video Super Resolution and Video Frame interpolation models. However, this type of solutions are memory inefficient, have high inference time, and could not make the proper use of space-time relation property. To this extent, we first interpolate in LR space using quadratic modeling. Input LR frames are super-resolved using a state-of-the-art Video Super-Resolution method. Flowmaps and blending mask which are used to synthesize LR interpolated frame is reused in HR space using bilinear upsampling. This leads to a coarse estimate of HR intermediate frame which often contains artifacts along motion boundaries. We use a refinement network to improve the quality of HR intermediate frame via residual learning. Our model is lightweight and performs better than current state-of-the-art models in REDS STSR Validation set.

10 citations


Network Information
Related Topics (5)
Convolutional neural network
74.7K papers, 2M citations
90% related
Image segmentation
79.6K papers, 1.8M citations
90% related
Feature extraction
111.8K papers, 2.1M citations
89% related
Deep learning
79.8K papers, 2.1M citations
88% related
Feature (computer vision)
128.2K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023469
2022859
2021330
2020322
2019298
2018236