scispace - formally typeset
Search or ask a question
Topic

Upsampling

About: Upsampling is a research topic. Over the lifetime, 2426 publications have been published within this topic receiving 57613 citations.


Papers
More filters
Proceedings ArticleDOI
23 Jun 2013
TL;DR: A novel approximation algorithm is developed whose complexity grows linearly with the image size and achieve realtime performance and is well suited for upsampling depth images using binary edge maps, an important sensor fusion application.
Abstract: We propose an algorithm utilizing geodesic distances to upsample a low resolution depth image using a registered high resolution color image. Specifically, it computes depth for each pixel in the high resolution image using geodesic paths to the pixels whose depths are known from the low resolution one. Though this is closely related to the all-pair-shortest-path problem which has O(n2 log n) complexity, we develop a novel approximation algorithm whose complexity grows linearly with the image size and achieve realtime performance. We compare our algorithm with the state of the art on the benchmark dataset and show that our approach provides more accurate depth upsampling with fewer artifacts. In addition, we show that the proposed algorithm is well suited for upsampling depth images using binary edge maps, an important sensor fusion application.

249 citations

Posted Content
TL;DR: In this article, the location of missing data is considered in the convolutional layer of the network and a simple sparse convolution layer is proposed for depth upsampling from sparse laser scan data.
Abstract: In this paper, we consider convolutional neural networks operating on sparse inputs with an application to depth upsampling from sparse laser scan data. First, we show that traditional convolutional networks perform poorly when applied to sparse data even when the location of missing data is provided to the network. To overcome this problem, we propose a simple yet effective sparse convolution layer which explicitly considers the location of missing data during the convolution operation. We demonstrate the benefits of the proposed network architecture in synthetic and real experiments with respect to various baseline approaches. Compared to dense baselines, the proposed sparse convolution network generalizes well to novel datasets and is invariant to the level of sparsity in the data. For our evaluation, we derive a novel dataset from the KITTI benchmark, comprising 93k depth annotated RGB images. Our dataset allows for training and evaluating depth upsampling and depth prediction techniques in challenging real-world settings and will be made available upon publication.

236 citations

Proceedings ArticleDOI
Sachit Menon1, Alexandru Damian1, Shijia Hu1, Nikhil Ravi1, Cynthia Rudin1 
14 Jun 2020
TL;DR: PULSE as mentioned in this paper proposes a self-supervised approach to generate realistic SR images that downscale to the original LR image by leveraging properties of high-dimensional Gaussians, which guides exploration through the latent space of a generative model.
Abstract: The primary aim of single-image super-resolution is to construct a high-resolution (HR) image from a corresponding low-resolution (LR) input. In previous approaches, which have generally been supervised, the training objective typically measures a pixel-wise average distance between the super-resolved (SR) and HR images. Optimizing such metrics often leads to blurring, especially in high variance (detailed) regions. We propose an alternative formulation of the super-resolution problem based on creating realistic SR images that downscale correctly. We present a novel super-resolution algorithm addressing this problem, PULSE (Photo Upsampling via Latent Space Exploration), which generates high-resolution, realistic images at resolutions previously unseen in the literature. It accomplishes this in an entirely self-supervised fashion and is not confined to a specific degradation operator used during training, unlike previous methods (which require training on databases of LR-HR image pairs for supervised learning). Instead of starting with the LR image and slowly adding detail, PULSE traverses the high-resolution natural image manifold, searching for images that downscale to the original LR image. This is formalized through the “downscaling loss,” which guides exploration through the latent space of a generative model. By leveraging properties of high-dimensional Gaussians, we restrict the search space to guarantee that our outputs are realistic. PULSE thereby generates super-resolved images that both are realistic and downscale correctly. We show extensive experimental results demonstrating the efficacy of our approach in the domain of face super-resolution (also known as face hallucination). Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.

226 citations

Journal ArticleDOI
TL;DR: Experimental results show that the proposed multiresolution-GFT scheme outperforms H.264 intra by 6.8 dB on average in peak signal-to-noise ratio at the same bit rate.
Abstract: Piecewise smooth (PWS) images (e.g., depth maps or animation images) contain unique signal characteristics such as sharp object boundaries and slowly varying interior surfaces. Leveraging on recent advances in graph signal processing, in this paper, we propose to compress the PWS images using suitable graph Fourier transforms (GFTs) to minimize the total signal representation cost of each pixel block, considering both the sparsity of the signal’s transform coefficients and the compactness of transform description. Unlike fixed transforms, such as the discrete cosine transform, we can adapt GFT to a particular class of pixel blocks. In particular, we select one among a defined search space of GFTs to minimize total representation cost via our proposed algorithms, leveraging on graph optimization techniques, such as spectral clustering and minimum graph cuts. Furthermore, for practical implementation of GFT, we introduce two techniques to reduce computation complexity. First, at the encoder, we low-pass filter and downsample a high-resolution (HR) pixel block to obtain a low-resolution (LR) one, so that a LR-GFT can be employed. At the decoder, upsampling and interpolation are performed adaptively along HR boundaries coded using arithmetic edge coding, so that sharp object boundaries can be well preserved. Second, instead of computing GFT from a graph in real-time via eigen-decomposition, the most popular LR-GFTs are pre-computed and stored in a table for lookup during encoding and decoding. Using depth maps and computer-graphics images as examples of the PWS images, experimental results show that our proposed multiresolution-GFT scheme outperforms H.264 intra by 6.8 dB on average in peak signal-to-noise ratio at the same bit rate.

225 citations

Book ChapterDOI
07 Oct 2012
TL;DR: This work presents an algorithm to synthetically increase the resolution of a solitary depth image using only a generic database of local patches, and shows how important further depth-specific processing, such as noise removal and correct patch normalization, dramatically improves results.
Abstract: We present an algorithm to synthetically increase the resolution of a solitary depth image using only a generic database of local patches. Modern range sensors measure depths with non-Gaussian noise and at lower starting resolutions than typical visible-light cameras. While patch based approaches for upsampling intensity images continue to improve, this is the first exploration of patching for depth images. We match against the height field of each low resolution input depth patch, and search our database for a list of appropriate high resolution candidate patches. Selecting the right candidate at each location in the depth image is then posed as a Markov random field labeling problem. Our experiments also show how important further depth-specific processing, such as noise removal and correct patch normalization, dramatically improves our results. Perhaps surprisingly, even better results are achieved on a variety of real test scenes by providing our algorithm with only synthetic training depth data.

224 citations


Network Information
Related Topics (5)
Convolutional neural network
74.7K papers, 2M citations
90% related
Image segmentation
79.6K papers, 1.8M citations
90% related
Feature extraction
111.8K papers, 2.1M citations
89% related
Deep learning
79.8K papers, 2.1M citations
88% related
Feature (computer vision)
128.2K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023469
2022859
2021330
2020322
2019298
2018236