scispace - formally typeset
Search or ask a question
Topic

Upstream activating sequence

About: Upstream activating sequence is a research topic. Over the lifetime, 1633 publications have been published within this topic receiving 100112 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: These data demonstrate that the expression of the human S100 beta gene is under complex transcriptional regulation that allows for precise control of the S100beta level in the nervous system.

43 citations

Journal ArticleDOI
TL;DR: RNA gel blot analysis of RNA extracted from transgenic tobacco plants is used to show that the octopine synthase gene is not constitutively expressed in all plant tissues and organs, and that tissue-specific pattern of expression is determined, to a large extent, by the 16-bp palindrome.
Abstract: Previous work has shown that the octopine synthase (ocs) gene encoded by the Agrobacterium tumefaciens Ti-plasmid contains an upstream activating sequence necessary for its expression in plant cells. This sequence is composed of an essential 16-bp palindrome and flanking sequences that modulate the level of expression of the ocs promoter in transgenic tobacco calli. In this study, we have used RNA gel blot analysis of RNA extracted from transgenic tobacco plants to show that the octopine synthase gene is not constitutively expressed in all plant tissues and organs. This tissue-specific pattern of expression is determined, to a large extent, by the 16-bp palindrome. Histochemical analysis, using an ocs-lacZ fusion gene, has indicated that the 16-bp palindrome directs the expression of the ocs promoter in specific cell types in the leaves, stems, and roots of transgenic tobacco plants. This expression is especially strong in the vascular tissue of the leaves, leaf mesophyll cells, leaf and stem guard cells, and the meristematic regions of the shoots and roots. Sequences surrounding the palindrome in the upstream activating sequence restrict the expression of the ocs promoter to fewer cell types, resulting in a reduced level of expression of beta-galactosidase activity in the central vascular tissue of leaves, certain types of leaf trichomes, and the leaf primordia.

43 citations

Journal ArticleDOI
TL;DR: The results suggest that CPF1 functions to modulate chromatin structure around the CDEI motif but that these changes at the MET25 and MET16 promoters do not explain how CPF 1 functions to maintain methionine-independent growth.
Abstract: CPF1 is an abundant basic-helix-loop-helix-ZIP protein that binds to the CDEI motif in Saccharomyces cerevisiae centromeres and in the promoters of numerous genes, including those encoding enzymes of the methionine biosynthetic pathway. Strains lacking CPF1 are methionine auxotrophs, and it has been proposed that CPF1 might positively influence transcription at the MET25 and MET16 genes by modulating promoter chromatin structure. We test this hypothesis and show that the regions surrounding the CDEI motifs in the MET25 and MET16 promoters are maintained in a nucleosome-free state and that this requires the entire CPF1 protein. However, the chromatin structure around the CDEI motifs does not change on derepression of transcription and does not correlate with the methionine phenotype of the cell. An intact CDEI motif but not CPF1 is required for transcriptional activation from a region of the MET25 upstream activation sequence. Our results suggest that CPF1 functions to modulate chromatin structure around the CDEI motif but that these changes at the MET25 and MET16 promoters do not explain how CPF1 functions to maintain methionine-independent growth. The presence of CPF1-dependent chromatin structures at these promoters leads to a weak repression of transcription.

43 citations

Journal ArticleDOI
TL;DR: Results indicate that Scs2p can contribute to coordinated phospholipid metabolism including INO1 expression by regulating phosphatidylcholine synthesis through the CDP-choline pathway.
Abstract: In the yeast Saccharomyces cerevisiae, the expression of phospholipid biosynthetic genes, including the INO1 gene (encoding inositol-1-phosphate synthase), is coordinately regulated by a cis-acting transcriptional element, UAS(INO) (inositol-sensitive upstream activating sequence). For this paper we studied the effect of SCS2 disruption on INO1 expression. SCS2 encodes a type II membrane protein and its deletion leads to inositol auxotrophy at temperatures above 34 degrees C. We found that the expression of the INO1 gene was reduced in the scs2Delta strain even when the cells were cultured under derepressing conditions for INO1 expression. However, the beta-galactosidase gene fused with the INO1 promoter region was expressed normally in the scs2Delta strain. The phospholipid composition of scs2Delta cells was not dramatically changed compared with wild-type cells at 28 degrees C, but the phosphatidylinositol level was reduced in scs2Delta cells cultured at 34 degrees C. In addition, elevated phosphatidylcholine synthesis through the CDP-choline pathway was observed in the scs2Delta strain, and the disruption of genes involved in the CDP-choline pathway rescued the INO1 expression defect of the scs2Delta strain. These results indicate that Scs2p can contribute to coordinated phospholipid metabolism including INO1 expression by regulating phosphatidylcholine synthesis through the CDP-choline pathway.

43 citations

Journal ArticleDOI
TL;DR: Analysis of promoter regulatory sequences of the human Id4 gene in transient transfections and gel mobility shift assays suggests that Id4 transcription control is highly complex, involving both negative and positive regulatory elements, including a novel inhibitory function exerted by Sp1 and Sp3 transcription factors.

43 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
87% related
RNA
111.6K papers, 5.4M citations
86% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20223
20218
20206
20196
20186