scispace - formally typeset
Search or ask a question
Topic

Upstream activating sequence

About: Upstream activating sequence is a research topic. Over the lifetime, 1633 publications have been published within this topic receiving 100112 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A highly sensitive version of chromosome conformation capture in combination with fluorescence microscopy is used to investigate Heat Shock Protein gene conformation and 3D nuclear organization in budding yeast and provides evidence for widespread, transcription-associated gene crumpling.
Abstract: Three-dimensional (3D) chromatin organization is important for proper gene regulation, yet how the genome is remodeled in response to stress is largely unknown. Here, we use a highly sensitive version of chromosome conformation capture in combination with fluorescence microscopy to investigate Heat Shock Protein (HSP) gene conformation and 3D nuclear organization in budding yeast. In response to acute thermal stress, HSP genes undergo intense intragenic folding interactions that go well beyond 5'-3' gene looping previously described for RNA polymerase II genes. These interactions include looping between upstream activation sequence (UAS) and promoter elements, promoter and terminator regions, and regulatory and coding regions (gene "crumpling"). They are also dynamic, being prominent within 60 s, peaking within 2.5 min, and attenuating within 30 min, and correlate with HSP gene transcriptional activity. With similarly striking kinetics, activated HSP genes, both chromosomally linked and unlinked, coalesce into discrete intranuclear foci. Constitutively transcribed genes also loop and crumple yet fail to coalesce. Notably, a missense mutation in transcription factor TFIIB suppresses gene looping, yet neither crumpling nor HSP gene coalescence is affected. An inactivating promoter mutation, in contrast, obviates all three. Our results provide evidence for widespread, transcription-associated gene crumpling and demonstrate the de novo assembly and disassembly of HSP gene foci.

42 citations

Journal ArticleDOI
TL;DR: In vitro promoter competition analysis demonstrated that the upstream promoter sequence, independent of the 294 to 304 promoter element, is capable of binding polymerase-transcription factors required for SV40 late gene transcription.
Abstract: We have previously identified an 11-base DNA sequence, 5'-G-G-T-A-C-C-T-A-A-C-C-3' (simian virus 40 [SV40] map position 294 to 304), which is important in the control of SV40 late RNA expression in vitro and in vivo (Brady et al., Cell 31:625-633, 1982). We report here the identification of another domain of the SV40 late promoter. A series of mutants with deletions extending from SV40 map position 0 to 300 was prepared by nuclease BAL 31 treatment. The cloned templates were then analyzed for efficiency and accuracy of late SV40 RNA expression in the Manley in vitro transcription system. Our studies showed that, in addition to the promoter domain near map position 300, there are essential DNA sequences between nucleotide positions 74 and 95 that are required for efficient expression of late SV40 RNA. Included in this SV40 DNA sequence were two of the six GGGCGG SV40 repeat sequences and an 11-nucleotide segment which showed strong homology with the upstream sequences required for the efficient in vitro and in vivo expression of the histone H2A gene. This upstream promoter sequence supported transcription with the same efficiency even when it was moved 72 nucleotides closer to the major late cap site. In vitro promoter competition analysis demonstrated that the upstream promoter sequence, independent of the 294 to 304 promoter element, is capable of binding polymerase-transcription factors required for SV40 late gene transcription. Finally, we show that DNA sequences which control the specificity of RNA initiation at nucleotide 325 lie downstream of map position 294.

41 citations

Journal ArticleDOI
TL;DR: The data reveal that Sgf73p is required for SAGA recruitment, and stimulates PIC formation either in a HAT-dependent or -independent manner, providing significant information on how Sg f73p and possibly human Sca7p function physiologically.
Abstract: Although Sgf73p, a yeast homologue of human Sca7p, has recently been implicated as a new component of Spt-Ada-Gcn5-acetyltransferase (SAGA), its association with SAGA and functional role in regulation of transcription remain unknown in vivo. Here, using a chromatin immunoprecipitation (ChIP) assay, we show in vivo that, like SAGA, Sgf73p is recruited to the upstream activating sequence (UAS) of a SAGA-dependent gene, GAL1, in an activator-dependent manner. Further, Sgf73p is required for recruitment of SAGA to the GAL1 UAS, and facilitates formation of the preinitiation complex (PIC) assembly at the GAL1 promoter. When PIC is not formed in Δsgf73, histone H3 is not evicted from the GAL1 promoter. Interestingly, PIC formation at GAL1 is not regulated by histone H3 acetylation or histone acetyltransferase (HAT) activity of SAGA. Similarly, Sgf73p facilitates PIC formation at another SAGA-dependent gene, ADH1, independent of histone H3 acetylation or HAT. In contrast, Sgf73p stimulates PIC formation at PHO84 (a SAGA-dependent gene), in a HAT-dependent-manner. Collectively, our data reveal that Sgf73p is required for SAGA recruitment, and stimulates PIC formation either in a HAT-dependent or -independent manner, providing significant information on how Sgf73p and possibly human Sca7p function physiologically.

41 citations

Journal ArticleDOI
TL;DR: A 505-nucleotide long DNA sequence of a part of the gene cluster for the proton-translocating ATPase ( pap operon) of E. coli was determined and identified as an active promoter of a gene coding for a small RNA of unknown function adjacent to the operon.

41 citations

Journal ArticleDOI
TL;DR: A series of 5′ terminal deletions were used to identify regulatory elements upstream of the β subunit gene that led to a marked reduction in gene expression and contain sequences that bind SEF4 in vitro.
Abstract: Genes encoding the β-conglycinin seed storage proteins of soybean are expressed only in seeds during specific stages of development. The different subunits of β-conglycinin, α′, α and β, are encoded by distinct members of a gene family. Yet there are marked differences in the regulation of the genes encoding the α′/α and β subunits. Previous work (Chen et al., EMBO J 7: 297–302, 1988) identified a seed specific transcriptional enhancer upstream of a gene encoding the α′ subunit. Mutations were made within this region to discern its functional components. Among those identified is a 62 bp region (between −77 and −140) that contains a vicilin box consensus sequence as well as a sequence that binds the soybean nuclear factor SEF4 in vitro. A second region, which contains a sequence homologous to the core of the legumin box consensus (i.e., CATGCAT-like or RY repeat element) at −246, was also shown to affect the activity of this enhancer in transgenic plants. A series of 5′ terminal deletions were used to identify regulatory elements upstream of the β subunit gene. Two regions were identified (from −553 to −442 and from −308 to −72) that, when deleted, led to a marked reduction in gene expression. Both of these elements contain sequences that bind SEF4 in vitro. The distal element also contains an AT-rich segment that recognizes a second nuclear factor, SEF1, in vitro. Neither of these elements contains any homology to the vicilin box consensus.

41 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
87% related
RNA
111.6K papers, 5.4M citations
86% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20223
20218
20206
20196
20186