scispace - formally typeset
Search or ask a question
Topic

Upstream activating sequence

About: Upstream activating sequence is a research topic. Over the lifetime, 1633 publications have been published within this topic receiving 100112 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The conformation of all seven DNA elements located upstream of the major E. coli rRNA P1 promoters is analyzed, showing that all seven rRNA upstream sequences are intrinsically curved.
Abstract: Ribosomal RNAs in E. coli are transcribed from seven operons, which are highly conserved in their organization and sequence. However, the upstream regulatory DNA regions differ considerably, suggesting differences in regulation. We have therefore analyzed the conformation of all seven DNA elements located upstream of the major E. coli rRNA P1 promoters. As judged by temperature-dependent gel electrophoresis with isolated DNA fragments comprising the individual P1 promoters and the complete upstream regulatory regions, all seven rRNA upstream sequences are intrinsically curved. The degree of intrinsic curvature was highest for the rrnB and rrnD fragments and less pronounced for the rrnA and rrnE operons. Comparison of the experimentally determined differences in curvature with programs for the prediction of DNA conformation revealed a generally high degree of conformity. Moreover, the analysis showed that the center of curvature is located at about the same position in all fragments. The different upstream regions were analyzed for their capacity to bind the transcription factors FIS and H-NS, which are known as antagonists in the regulation of rRNA synthesis. Gel retardation experiments revealed that both proteins interact with the upstream promoter regions of all seven rDNA fragments, with the affinities of the different DNA fragments for FIS and H-NS and the structure of the resulting complexes deviating considerably. FIS binding was non-cooperative, and at comparable protein concentrations the occupancy of the different DNA fragments varied between two and four binding sites. In contrast, H-NS was shown to bind cooperatively and intermediate states of occupancy could not be resolved for each fragment. The different gel electrophoretic mobilities of the individual DNA/protein complexes indicate variable structures and topologies of the upstream activating sequence regulatory complexes. Our results are highly suggestive of differential regulation of the individual rRNA operons.

35 citations

Journal ArticleDOI
TL;DR: A region of DNA 116 to 271 base-pairs upstream from the GAL7 gene of Saccharomyces cerevisiae activates transcription from a heterologous promoter and does so in either orientation, showing that the G AL7 upstream region contains an upstream activating sequence (UAS).

35 citations

Journal ArticleDOI
TL;DR: The results demonstrate the important role Sp1 and Sp3 plays in regulating the expression of human EC-SOD in the lung and show strong activation of luciferase gene expression.
Abstract: The molecular mechanisms that govern the transcription of human extracellular superoxide dismutase (EC-SOD), the major extracellular antioxidant enzyme, are largely unknown. To elucidate the mechanisms involved in human EC-SOD gene regulation and expression, we localized multiple transcription start sites to a finite region located 3.9 kb upstream of the ATG initiation codon. Within this segment, we subcloned a 2.7-kb fragment upstream of a luciferase reporter gene; the resulting construct exhibited strong in vivo promoter activity in two lung-derived cell lines. Deletion analysis of the EC-SOD 5′-flanking sequences identified a minimal 0.3-kb region that had strong basal promoter activity. Computer sequence analysis revealed a putative Sp1-like binding site within the EC-SOD proximal promoter region that lacked a TATA-box and showed a high frequency of GC nucleotides. Binding of Sp1 and Sp3 transcription factors to the EC-SOD promoter was confirmed by DNase I footprint analysis, electophoretic mobility shift assay, and competition and supershift assays. Cotransfection of the EC-SOD promoter–luciferase reporter constructs with plasmids encoding Sp1 and Sp3 into Sp-deficient insect SL2 cells showed strong activation of luciferase gene expression. The occupancy of the EC-SOD promoter by Sp1/Sp3 and RNA polymerase II in vivo was determined by chromatin immunoprecipitation assay and correlated well with levels of EC-SOD expression in lung epithelial cells (A549) and pulmonary fibroblasts (MRC5). Collectively, our results demonstrate the important role Sp1 and Sp3 plays in regulating the expression of human EC-SOD in the lung.

35 citations

Journal ArticleDOI
TL;DR: The Escherichia coli argU gene encodes the rare arginine tRNA, tRNA(UCUArg), which decodes the similarly rare AGA codons, and is relatively insensitive to growth rate regulation, at least when assayed on a multicopy plasmid.
Abstract: The Escherichia coli argU gene encodes the rare arginine tRNA, tRNA(UCUArg), which decodes the similarly rare AGA codons. The argU promoter is, with two exceptions, a typical, strongly expressed stable RNA gene promoter which is stimulated by an upstream activator sequence. Unlike other tRNA operons, however, argU expression is severely inhibited by sequences downstream of the transcription start point. In vivo, nucleotides +2 to +45 inhibited expression by 25- to 100-fold when measured by fusion of argU promoter regions to the chloramphenicol acetyltransferase reporter gene or by quantitative primer extension analysis. In vitro, linearized argU promoter fragments on which the argU region ended at +1 supported 5- to 10-fold-more transcription than when the argU region ended at +45. This difference in degree of inhibition between in vivo and in vitro conditions suggests that several factors, some of which could be absent in vitro, might limit expression in vivo. Alternatively, one mechanism might limit expression both in vivo and in vitro but function more efficiently in vivo. A second difference from strongly expressed stable RNA promoters is the fact the argU gene is relatively insensitive to growth rate regulation, at least when assayed on a multicopy plasmid.

35 citations

Journal ArticleDOI
TL;DR: Functional characterization of human UCP2 promoter-CAT fusion constructs in transient expression assays showed that minimal promoter activity was observed within 65 bp upstream of the transcriptional start site, but 75 bp further upstream a strong cis-acting regulatory element (or enhancer) was identified, which significantly enhanced basal promoter activity.

34 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
87% related
RNA
111.6K papers, 5.4M citations
86% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20223
20218
20206
20196
20186