scispace - formally typeset
Search or ask a question
Topic

Upstream activating sequence

About: Upstream activating sequence is a research topic. Over the lifetime, 1633 publications have been published within this topic receiving 100112 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The cis-acting regulatory region responsible for the enhanced expression of the CAT activity in response to the cell differentiation was found to be localized at 2 kilobases upstream of the transcription initiation site.
Abstract: The expression of the fast type of myosin alkali light chain 1 is induced during the differentiation of muscle cells. To study the mechanism of its gene regulation, we joined the sequence of the 5'-flanking and upstream region of the chicken myosin alkali light-chain gene to the structural gene for chloramphenicol acetyltransferase (CAT). The fusion gene was introduced either into quail myoblasts transformed by a temperature-sensitive mutant of Rous sarcoma virus (tsNY68) or into chicken myoblasts, and the transiently expressed CAT activity was assayed after the differentiation of the myoblasts. From the experiments with the external and internal deletion mutants of the fusion gene, the cis-acting regulatory region responsible for the enhanced expression of the CAT activity in response to the cell differentiation was found to be localized at 2 kilobases upstream of the transcription initiation site. This region of 160 nucleotides contained two pairs of short sequences worthy of note, a direct repeat of 12 nucleotides, and an inverted repeat of 8 nucleotides. The nucleotide sequences of the 5'-flanking sequence up to nucleotide -3381 were determined and compared with those of the upstream activating elements of actin genes.

17 citations

Journal ArticleDOI
TL;DR: Findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression and show that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells.
Abstract: RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-γ-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1–DNA and STAT–DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression.

17 citations

Journal ArticleDOI
TL;DR: It is shown that promoters can also interact positively, and transcriptional elongation over this class of intragenic promoters will generate co‐regulated sense–antisense transcripts, or, alternatively initiating transcripts, thus expanding the diversity and complexity of the human transcriptome.
Abstract: Transcriptional interference denotes negative cis effects between promoters. Here, we show that promoters can also interact positively. Bidirectional RNA polymerase II (Pol II) elongation over the silent human endogenous retrovirus (HERV)-K 18 promoter (representative of 2.5 x 10(3) similar promoters genomewide) activates transcription. In tandem constructs, an upstream promoter activates HERV-K 18 transcription. This is abolished by inversion of the upstream promoter, or by insertion of a poly(A) signal between the promoters; transcription is restored by poly(A) signal mutants. TATA-box mutants in the upstream promoter reduce HERV-K 18 transcription. Experiments with the same promoters in a convergent orientation produce similar effects. A small promoter deletion partially restores HERV-K 18 activity, consistent with activation resulting from repressor repulsion by the elongating Pol II. Transcriptional elongation over this class of intragenic promoters will generate co-regulated sense-antisense transcripts, or, alternatively initiating transcripts, thus expanding the diversity and complexity of the human transcriptome.

17 citations

Journal ArticleDOI
01 Feb 1991-Yeast
TL;DR: Introduction of the lacZ reporter gene from Escherichia coli into a cloning site downstream from the CUP1 promoter showed that expression of this gene is constitutive in K. lactis but in S. cerevisiae induction by copper is necessary.
Abstract: Shuttle plasmids, pE1.CUP1B and pE1.CUP1E of 10.6 kb, have been constructed between the metallothionein-encoding CUP1 gene of Saccharomyces cerevisiae and a vector capable of replication in Kluyveromyces lactis. Introduction of these plasmids into K. lactis confers resistance to copper as well as to cadmium and silver. Resistance to these latter metal ions, in the absence of induction by copper, suggested that the CUP1 gene is constitutively expressed in the foreign background. Introduction of the lacZ reporter gene from Escherichia coli into a cloning site downstream from the CUP1 promoter showed that expression of this gene is constitutive in K. lactis but in S. cerevisiae induction by copper is necessary. Sequences upstream from the CUP1 promoter are involved in the constitutive expression since deletion of 91 nucleotides from this region abolishes metal resistance. It is suggested that a K. lactis protein, normally involved in activating transcription of the resident CUP1 gene in the presence of copper, can promote transcription in the absence of metal ion by binding to the upstream activation sequence of the introduced CUP1 gene.

17 citations

Journal ArticleDOI
TL;DR: Although ope mutations restore wild-type levels of transcription, his3 chromatin structure, as assayed by micrococcal nuclease sensitivity of the TATA box, resembles that found in the his3-delta 13 parent rather than in the wild- type strain, providing further evidence that Tata box sensitivity is not correlated with transcriptional activation.
Abstract: Transcription of the Saccharomyces cerevisiae his3 gene requires an upstream promoter element and a TATA element. A strain containing his3-delta 13, an allele which deletes the upstream promoter element but contains the TATA box and intact structural gene, fails to express the gene and consequently is unable to grow in medium lacking histidine. In this paper we characterize His+ revertants of his3-delta 13 which are due to unlinked suppressor mutations. Recessive suppressors in three different ope genes allow his3-delta 13 to be expressed at wild-type levels. In all cases, the suppression is due to increased his3 transcription. However, unlike the wild-type his3 gene, whose transcripts are initiated about equally from two different sites (+1 and +12), transcription due to the ope mutations is initiated only from the +12 site, ope-mediated transcription is regulated in a novel manner; it is observed in minimal medium, but not in rich broth. Although ope mutations restore wild-type levels of transcription, his3 chromatin structure, as assayed by micrococcal nuclease sensitivity of the TATA box, resembles that found in the his3-delta 13 parent rather than in the wild-type strain. This provides further evidence that TATA box sensitivity is not correlated with transcriptional activation. ope mutations are pleiotropic in that cells have a crunchy colony morphology and lyse at 37 degrees C in conditions of normal osmolarity. ope mutations are allele specific because they fail to suppress five other his3 promoter mutations. We discuss implications concerning upstream promoter elements and propose some models for ope suppression.

17 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
87% related
RNA
111.6K papers, 5.4M citations
86% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20223
20218
20206
20196
20186