scispace - formally typeset
Search or ask a question
Topic

Upstream activating sequence

About: Upstream activating sequence is a research topic. Over the lifetime, 1633 publications have been published within this topic receiving 100112 citations.


Papers
More filters
Journal ArticleDOI
01 Jun 1985-Cell
TL;DR: Estimation study of mutant IFN-beta genes demonstrates that sequences upstream, but not downstream, of -40 from the cap site are responsible for the viral induction of the gene, and the upstream boundary of the DNA sequences required to support the maximum level of induction lies between -117 and -105 from the caps.

178 citations

Journal ArticleDOI
TL;DR: Data suggest that a potential positive autoregulatory loop mediated through an upstream regulatory element is essential for proper PU.1 gene expression.
Abstract: Regulation of the hematopoietic transcription factor PU.1 (Spi-1) plays a critical role in the development of white cells, and abnormal expression of PU.1 can lead to leukemia. We previously reported that the PU.1 promoter cannot induce expression of a reporter gene in vivo, and cell-type-specific expression of PU.1 in stable lines was conferred by a 3.4-kb DNA fragment including a DNase I hypersensitive site located 14 kb upstream of the transcription start site. Here we demonstrate that this kb -14 site confers lineage-specific reporter gene expression in vivo. This kb -14 upstream regulatory element contains two 300-bp regions which are highly conserved in five mammalian species. In Friend virus-induced erythroleukemia, the spleen focus-forming virus integrates into the PU.1 locus between these two conserved regions. DNA binding experiments demonstrated that PU.1 itself and Elf-1 bind to a highly conserved site within the proximal homologous region in vivo. A mutation of this site abolishing binding of PU.1 and Elf-1 led to a marked decrease in the ability of this upstream element to direct activity of reporter gene in myelomonocytic cell lines. These data suggest that a potential positive autoregulatory loop mediated through an upstream regulatory element is essential for proper PU.1 gene expression.

176 citations

Journal ArticleDOI
TL;DR: It is shown that the Krox‐20 protein binds in vitro to two specific DNA sites located upstream from the homeobox containing gene Hox‐1.4, consistent with the similarity existing between the zinc fingers of the two proteins.
Abstract: Krox-20 is a mouse zinc finger gene expressed in a segment-specific manner in the early central nervous system, which makes it a potential developmental control gene. In this report, we show that the Krox-20 protein binds in vitro to two specific DNA sites located upstream from the homeobox containing gene Hox-1.4. The nucleotide sequence recognized by Krox-20 is closely related to the Sp1 target sequence, which is consistent with the similarity existing between the zinc fingers of the two proteins. In co-transfection experiments in cultured cells, Krox-20 dramatically activates transcription from the herpes simplex virus thymidine kinase promoter when an oligomer of its binding site is present in cis close to the promoter. Analysis of mutated binding sites demonstrates that the level of activation by Krox-20 correlates with the affinity of the protein for the mutant sequence. These data indicate that Krox-20 constitutes a sequence-specific DNA-binding transcription factor. Parallel analysis of the expression of Krox-20 and Hox-1.4 in the neural tube by in situ hybridization revealed no overlap, arguing against direct interactions between these two genes. The possible involvement of Krox-20 in the regulation of the transcription of other homeobox genes is discussed in view of their respective patterns of expression.

175 citations

Journal ArticleDOI
TL;DR: Comparison with GenBank sequences revealed a fourth FBP family member encoded by Caenorhabditis elegans chromosome III, illustrating the high degree of homology in this evolutionarily ancient and conserved family.

171 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the E.coli protein FIS (Factor for Inversion Stimulation) also binds to the UAS of the thrU(tufB) operon forming three protein‐DNA complexes, suggesting that transcription of the three operons, if not of more stable RNA operon, is activated by a common trans activator.
Abstract: The thrU(tufB) operon of Escherichia coli is endowed with a cis-acting region upstream of the promoter, designated UAS for Upstream Activator Sequence. A protein fraction has been isolated that binds specifically to DNA fragments of the UAS, thus forming three protein-DNA complexes corresponding to three binding sites on the UAS. It stimulates in vitro transcription of the operon by facilitating the binding of the RNA polymerase to the promoter. All three protein-DNA complexes contain one and the same protein. Dissociation constants for the three complexes have been determined, the lowest being in the sub-nanomolar range. The protein also binds to the UAS of the tyrT operon and to the UAS upstream of the P1 promoter of the rrnB operon, suggesting that transcription of the three operons, if not of more stable RNA operons, is activated by a common trans activator. We demonstrate that the E.coli protein FIS (Factor for Inversion Stimulation) also binds to the UAS of the thrU(tufB) operon forming three protein-DNA complexes. A burst of UAS- and FIS-dependent promoter activity is observed after reinitiation of growth of stationary cultures in fresh medium.

170 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
87% related
RNA
111.6K papers, 5.4M citations
86% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20223
20218
20206
20196
20186