scispace - formally typeset
Search or ask a question
Topic

Upstream activating sequence

About: Upstream activating sequence is a research topic. Over the lifetime, 1633 publications have been published within this topic receiving 100112 citations.


Papers
More filters
Journal ArticleDOI
01 Dec 1994-Yeast
TL;DR: The amino acid sequence of 13 open reading frames (ORF > 299 bp) located on a 21·7 kb DNA segment from the left arm of chromosome XIV of Saccharomyces cerevisiae, among which N1394 is probably a membrane protein, is reported.
Abstract: We report the amino acid sequence of 13 open reading frames (ORF > 299 bp) located on a 21.7 kb DNA segment from the left arm of chromosome XIV of Saccharomyces cerevisiae. Five open reading frames had been entirely or partially sequenced previously: WHI3, GCR2, SPX19, SPX18 and a heat shock gene similar to SSB1. The products of 8 other ORFs are new putative proteins among which N1394 is probably a membrane protein. N1346 contains a leucine zipper pattern and the corresponding ORF presents an HAP (global regulator of respiratory genes) upstream activating sequence in the promoting region. N1386 shares homologies with the DNA structure-specific recognition protein family SSRPs and the corresponding ORF is preceded by an MCB (MluI cell cycle box) upstream activating factor.

9 citations

Journal ArticleDOI
TL;DR: Human H2AZ gene promoter fragments that included sequences upstream from the core promoter resulted in decreased activity of reporter constructs transfected into several human cell lines, but increased activity in the undifferentiated human embryonal carcinoma cell line Tera-2.

9 citations

Journal ArticleDOI
TL;DR: Data indicate that bent DNA located between upstream activator sequences can facilitate transcriptional synergism between bound activators.

9 citations

Journal ArticleDOI
TL;DR: An enhanced hTERT promoter-driven CRISPR/Cas9 system is successfully constructed and data showed that it could selectively suppress the progression of bladder cancer cells.
Abstract: The current therapies for treating tumors are lacking in efficacy and specificity. Synthetic biology principles may bring some new possible methods for curing cancer. Here we present a synthetic logic circuit based on the CRISPR/Cas9 system. The CRISPR/Cas9 technology has been applied in many biological fields, including cancer research. In this study, the expression of Cas9 nuclease was controlled indirectly by an enhanced hTERT promoter using the GAL4/upstream activating sequence (UAS) binding system. Cas9 was driven by 5XUAS, single guide RNA (sgRNA) was used to target mutant or wild-type HRAS, and the fusion gene GAL4-P65 was driven by the enhanced hTERT promoter. The system was tested in bladder cancer cells (T24 and 5637) and the results showed that the enhanced hTERT promoter could drive the expression of GAL4-P65 in these bladder cancer cell lines. Then all these devices were packed into lentivirus and the results of quantitative real-time PCR showed that the mRNA expression level of HRAS was selectively inhibited in the T24 and 5637 cells. The results of functional experiments suggested that the proliferation, cell migration and invasion were selectively suppressed, and that the apoptosis rate was increased in bladder cancer cells but not in human foreskin fibroblasts (HFF). In conclusion, we successfully constructed an enhanced hTERT promoter-driven CRISPR/Cas9 system and data showed that it could selectively suppress the progression of bladder cancer cells.

9 citations

Journal ArticleDOI
TL;DR: It is proposed that the transcription of HP2K is strictly controlled by tissue-specific factors even though its genomic DNA contains several transcriptional elements.

9 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
87% related
RNA
111.6K papers, 5.4M citations
86% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20223
20218
20206
20196
20186