scispace - formally typeset
Search or ask a question
Topic

Upstream activating sequence

About: Upstream activating sequence is a research topic. Over the lifetime, 1633 publications have been published within this topic receiving 100112 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that a factor with similar tissue distribution and binding characteristics to those of IEF1 binds to the IEB1 site in the human insulin gene, but that a separate factor, identified as the adenovirus major late transcription factor [MLTF, or upstream stimulating factor (USF)] binds tothe IEB2 site.
Abstract: Two important sequence elements, designated insulin enhancer binding site 1 (IEB1) or NIR and IEB2 or FAR, are involved in regulating expression of the rat insulin I gene. These elements bind a helix-loop-helix transcription factor, insulin enhancer factor 1 (IEF1). The IEB1 site is highly conserved among insulin genes but the IEB2 site is not conserved. To investigate the factors binding at the equivalent IEB1 and IEB2 sites in the human insulin gene enhancer, electrophoretic mobility shift assays were performed using a variety of cell extracts and probes specific for the homologous IEB1 and IEB2 sites. The results indicate that a factor with similar tissue distribution and binding characteristics to those of IEF1 binds to the IEB1 site in the human insulin gene, but that a separate factor, identified as the adenovirus major late transcription factor [MLTF, or upstream stimulating factor (USF)] binds to the IEB2 site.

62 citations

Journal ArticleDOI
TL;DR: A DNA-binding protein has been identified from extracts of the budding yeast Saccharomyces cerevisiae which binds to sites present in the promoter regions of a number of yeast genes transcribed by RNA polymerase II, including SIN3 (also known as SDI1), SWI5, CDC9, and TOP1.
Abstract: A DNA-binding protein has been identified from extracts of the budding yeast Saccharomyces cerevisiae which binds to sites present in the promoter regions of a number of yeast genes transcribed by RNA polymerase II, including SIN3 (also known as SDI1), SWI5, CDC9, and TOP1. This protein also binds to a site present in the enhancer for the 35S rRNA gene, which is transcribed by RNA polymerase I, and appears to be identical to the previously described REB1 protein (B. E. Morrow, S. P. Johnson, and J. R. Warner, J. Biol. Chem. 264:9061-9068, 1989). When oligonucleotides containing a REB1-binding site are placed between the CYC1 upstream activating sequence and TATA box, transcription by RNA polymerase II in vivo is substantially reduced, suggesting that REB1 acts as a repressor of RNA polymerase II transcription. The in vitro levels of the REB1 DNA-binding activity are reduced in extracts prepared from strains bearing a mutation in the SIN3 gene. A greater reduction in REB1 activity is observed if the sin3 mutant strain is grown in media containing galactose as a carbon source.

62 citations

Journal ArticleDOI
TL;DR: A functional dissection of ADR1 indicated that at least part of the sequence between amino acids 76 to 98, in addition to the two finger domains, is required for high-affinity DNA binding, which suggested that the sequences withinADR1 influence the expression of the gene fusion.
Abstract: ADR1 is a transcription factor required for activation of the glucose-repressible alcohol dehydrogenase 2 (ADH2) gene in Saccharomyces cerevisiae. ADR1 has two zinc finger domains between amino acids 102 and 159, and it binds to an upstream activation sequence (UAS1) in the ADH2 promoter. A functional dissection of ADR1 was performed by using a series of amino- and carboxy-terminal deletion mutants of ADR1, most of which were fused to the Escherichia coli beta-galactosidase. These deletion mutants were assayed for binding to UAS1 in vitro, for the ability to activate ADH2 transcription in vivo, and for level of expression. Deletion of ADR1 amino acids 150 to 172 and 76 to 98 eliminated DNA binding in vitro, which accounted for the loss of transcriptional activation in vivo. Results with the former deletion mutant indicated that both of the ADR1 zinc fingers are necessary for sequence-specific DNA binding. Results with the latter deletion mutant suggested that at least part of the sequence between amino acids 76 to 98, in addition to the two finger domains, is required for high-affinity DNA binding. The smallest fusion protein able to activate ADH2 transcription, containing ADR1 amino acids 76 to 172, was much less active in vivo than was the longest fusion protein containing amino acids 1 to 642 of ADR1. In addition, multiple regions of the ADR1 polypeptide (including amino acids 40 to 76, 260 to 302, and 302 to 505), which are required for full activation of ADH2, were identified. An ADR1-beta-galactosidase fusion protein containing only the amino-terminal 16 amino acids of ADR1 was present at a much higher level than were larger fusion proteins, which suggested that the sequences within ADR1 influence the expression of the gene fusion.

62 citations

Journal ArticleDOI
TL;DR: The importance of ICR III and ICR IV in transcription initiation and in sequestering transcription factors suggests the presence of an activity in D. melanogaster similar to transcription factor TFIIIA of Xenopus laevis and HeLa cells.
Abstract: Linker-scanning (LS) mutations were constructed spanning the length of the Drosophila melanogaster 5S RNA gene. In vitro transcription analysis of the LS 5S DNAs revealed five transcription control regions. One control region essential for transcription initiation was identified in the 5'-flanking sequence. The major sequence determinants of this upstream promoter region were located between coordinates -39 and -26 (-30 region), but important sequences extended to the transcription start site at position 1. Since mutations in the upstream promoter did not alter the ability of 5S DNA to sequester transcription factors into a stable transcription complex, it appears that this control region involved the interaction of RNA polymerase III. Active 5S DNA transcription additionally required the four intragenic control regions (ICRs) located between coordinates 3 and 18 (ICR I), 37 and 44 (ICR II), 48 and 61 (ICR III), and 78 and 98 (ICR IV). LS mutations in each ICR decreased the ability of 5S DNA to sequester transcription factors. ICR III, ICR IV, and the spacer sequence between were similar in sequence and position to the determinant elements of the multipartite ICR of Xenopus 5S DNA. The importance of ICR III and ICR IV in transcription initiation and in sequestering transcription factors suggests the presence of an activity in D. melanogaster similar to transcription factor TFIIIA of Xenopus laevis and HeLa cells. Transcription initiation of Drosophila 5S DNA was not eliminated by LS mutations in the spacer region even though these mutations reduced the ability of the TFIIIA-like activity to bind. The previously unidentified control regions ICR I and ICR II appear to be important for the interaction of a transcription factor activity, or multiple-factor activities, distinct from the TFIIIA-like activity. The interaction of this activity with ICR I directed the selection of the transcription start site.

62 citations

Journal ArticleDOI
01 Apr 2004-Genetics
TL;DR: The data indicate that Stp1 may act in combination with distinct sets of transcription factors, according to the gene context, to promote induction of transcription in response to external amino acids, and that the TOR pathway mediating global nitrogen control of transcription does not interfere with the external amino acid signaling pathway.
Abstract: Yeast cells respond to the presence of amino acids in their environment by inducing transcription of several amino acid permease genes including AGP1, BAP2, and BAP3. The signaling pathway responsible for this induction involves Ssy1, a permease-like sensor of external amino acids, and culminates with proteolytic cleavage and translocation to the nucleus of the zinc-finger proteins Stp1 and Stp2, the lack of which abolishes induction of BAP2 and BAP3. Here we show that Stp1-but not Stp2-plays an important role in AGP1 induction, although significant induction of AGP1 by amino acids persists in stp1 and stp1 stp2 mutants. This residual induction depends on the Uga35/Dal81 transcription factor, indicating that the external amino acid signaling pathway activates not only Stp1 and Stp2, but also another Uga35/Dal81-dependent transcriptional circuit. Analysis of the AGP1 gene's upstream region revealed that Stp1 and Uga35/Dal81 act synergistically through a 21-bp cis-acting sequence similar to the UAS(AA) element previously found in the BAP2 and BAP3 upstream regions. Although cells growing under poor nitrogen-supply conditions display much higher induction of AGP1 expression than cells growing under good nitrogen-supply conditions, the UAS(AA) itself is totally insensitive to nitrogen availability. Nitrogen-source control of AGP1 induction is mediated by the GATA factor Gln3, likely acting through adjacent 5'-GATA-3' sequences, to amplify the positive effect of UAS(AA). Our data indicate that Stp1 may act in combination with distinct sets of transcription factors, according to the gene context, to promote induction of transcription in response to external amino acids. The data also suggest that Uga35/Dal81 is yet another transcription factor under the control of the external amino acid sensing pathway. Finally, the data show that the TOR pathway mediating global nitrogen control of transcription does not interfere with the external amino acid signaling pathway.

62 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
Transcription factor
82.8K papers, 5.4M citations
87% related
RNA
111.6K papers, 5.4M citations
86% related
Mutant
74.5K papers, 3.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20223
20218
20206
20196
20186