scispace - formally typeset
Search or ask a question
Topic

Urea

About: Urea is a research topic. Over the lifetime, 21394 publications have been published within this topic receiving 382444 citations. The topic is also known as: carbamide & carbonic acid diamide.


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported for the first time that gold nanoparticles-catalyzed 3,3',5,5'-tetramethylbenzidine-H2O2 system can serve as an ultrasensitive colorimetric pH indicator and a novel sensing platform for the determination of urea, urease, and ure enzyme inhibitor.

106 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of reducing ammonia loss on denitrification and total N loss was also studied, and the results show that reducing the ammonia loss by incorporating urea into the soil does not necessarily result in reduced total N losses, and suggest that the efficiency of fertilizer N will be improved only when both N-loss processes are controlled simultaneously.
Abstract: The relative importance of ammonia volatilization and denitrification as loss processes following the application of urea to flooded rice by the traditional method was assessed at four sites with different characteristics in the Philippines. The effect of reducing ammonia loss on denitrification and total N loss was also studied. The total N loss was determined by a 15N-balance method and ammonia volatilization was assessed by a bulk aerodynamic method following the application of urea to small plots (4.8×5.2 m). As run-off was prevented and leaching losses were negligible, the denitrification loss was assessed as the difference between total N loss and ammonia loss. When urea was broadcast into the floodwater at transplanting, the ammonia loss varied from 10% to 56% of the applied N. Loss was smallest at Aguilar where wind speeds were low and the greatest at Mabitac where floodwater pH values and temperatures were high and the winds were strong. The ammonia loss was reduced at all sites by incorporating the urea into the soil by harrowing. However, the reduction achieved varied markedly between sites, with the largest reduction (from 56% to 7% loss of the applied N) being observed at Mabitac. The total N lost from the basal application into the floodwater ranged from 59% to 71% of the applied N. Incorporating the urea by harrowing reduced the total N loss at two sites, increased the total N loss at the third site, and had no effect at the fourth site. The denitrification losses ranged widely (from 3% to 50% of the applied N) when urea was broadcast into the floodwater at the four sites. The denitrification loss was low when the ammonia loss was high (Mabitac) and high when the ammonia loss was low (Aguilar). Reducing ammonia losses by incorporating the urea into the flooded soil resulted in increased denitrification losses at three of the sites and appeared to have no effect on denitrification at the fourth site. The results show that reducing the ammonia loss by incorporating urea into the soil does not necessarily result in reduced total N loss, and suggest that the efficiency of fertilizer N will be improved only when both N-loss processes are controlled simultaneously.

106 citations

Journal ArticleDOI
TL;DR: In basal medium, soybean cells grow slowly with urea nitrogen source presumably because the trace amounts of Ni(2+) present (
Abstract: Potassium citrate (10 mM, pH 6) inhibits the growth of cultured (Glycine max L.) cells when urea is the sole nitrogen source. Ureadependent citrate toxicity is overcome by three separate additions to the growth medium: (a) NH(4)Cl (20 mM); (b) high levels of MgCl(2) (10 mM) or CaCl(2) (5-10 mM); (c) low levels of NiSO(4) (10(-2) mM). Additions of 10(-2) mM NiSO(4) not only overcome citrate growth inhibition but the resultant growth is usually better than urea-supported growth in basal medium (neither added citrate nor added nickel). In the absence of added citrate, exceedingly low levels of NiSO(4) (10(-4) mM) strongly stimulate urea-supported growth in suspension cultures.Citrate does not inhibit growth when arginine is sole nitrogen source. However, cells using arginine have no net urease synthesis in the presence of 10 mM potassium citrate. When 10(-2) mM NiSO(4) is added to this medium, urease specific activity is 10 times that observed in basal medium lacking both citrate and added nickel.Citrate is a chelator of divalent cations. That additional Mg(2+) or Ca(2+) alleviates urea-dependent citrate toxicity indicates that citrate is acting by chelation, probably of another trace divalent cation; this is probably Ni(2+) since at 10(-2) mM it overcomes citrate toxicity and at 10(-4) mM it stimulates urea-supported growth in the absence of citrate. That ammonia overcomes citrate toxicity indicates that the trace Ni(2+) is essential specifically for the conversion of urea to ammonia. Ni(2+) stimulation of urease levels in arginine-grown cells supports this contention.In basal medium, soybean cells grow slowly with urea nitrogen source presumably because the trace amounts of Ni(2+) present (

106 citations

Journal ArticleDOI
TL;DR: Results suggest that the displacement of the ligand His-18 by a solvent molecule and the subsequent disintegration of the residual structures are complex processes and involve at least three kinetic steps.
Abstract: Previous work has shown that at neutral pH ferricytochrome c (horse heart) retains certain residual structures in concentrated solutions of urea or guanidine hydrochloride (Tsong, T. Y. (1974), J. Biol. Chem. 249, 1988). Present studies reveal that cooperative unfolding of these residual structures can be achieved by acidification of the protein to pH 4 in 9 M urea but can only be partially achieved in a 6 M guanidine hydrochloride solution. The evidence that the residual structures unfold in 9 M urea upon acidification is twofold. (1) Further uncoupling of the Trp-59-heme interaction occurs; this is reflected in the intensification of the tryptophan fluorescence from 55 to 90 percent relative to that of free tryptophan in the same solvent. (2) The intrinsic viscosity of the protein solution increases from 15.0 to 21 ml/g. The acidification also induces a spin-state transformation of the heme group at pH 5 both in urea and in guanidine hydrochloride. Acidic titration of the protein in urea and guanidine hydrochloride indicates that the unfolding involves the absorption of a single proton. However, the kinetics of the spin-state transformation are triphasic. These results suggest that the displacement of the ligand His-18 by a solvent molecule and the subsequent disintegration of the residual structures are complex processes and involve at least three kinetic steps. The ineffectiveness of guanidine hydrochloride as a denaturant for ferricytochrome c is shown to be due to the presence of the high concentration of Cl minus which can stabilize certain elements of the protein structure.

106 citations

Journal ArticleDOI
10 Dec 2009-Nature
TL;DR: It is established that the urea transporter operates by a channel-like mechanism and the physical and chemical basis of urea selectivity is revealed.
Abstract: Urea is highly concentrated in the mammalian kidney to produce the osmotic gradient necessary for water re-absorption. Free diffusion of urea across cell membranes is slow owing to its high polarity, and specialized urea transporters have evolved to achieve rapid and selective urea permeation. Here we present the 2.3 A structure of a functional urea transporter from the bacterium Desulfovibrio vulgaris. The transporter is a homotrimer, and each subunit contains a continuous membrane-spanning pore formed by the two homologous halves of the protein. The pore contains a constricted selectivity filter that can accommodate several dehydrated urea molecules in single file. Backbone and side-chain oxygen atoms provide continuous coordination of urea as it progresses through the filter, and well-placed α-helix dipoles provide further compensation for dehydration energy. These results establish that the urea transporter operates by a channel-like mechanism and reveal the physical and chemical basis of urea selectivity. The osmotic gradient necessary to facilitate water resorption in the kidney is maintained by high concentrations of urea. The free diffusion of urea across the cell membrane is slow, so highly conserved urea transporters have evolved to facilitate selective permeation of urea. Here Levin et al. report the X-ray crystal structure of a bacterial homologue of the urea transporter, from Desulfovibrio vulgaris. The transporter contains a pore with a selectivity filter that can accommodate multiple dehydrated urea molecules in single file, revealing that the transporter operates by a channel-like mechanism. Specialized urea transporters have evolved to achieve rapid and selective urea permeation in the mammalian kidney, a process ultimately necessary for water re-absorption. Here, the X-ray crystal structure of a functional urea transporter from the bacterium Desulfovibrio vulgaris is presented and analysed; the results establish that the urea transporter operates by a channel-like mechanism and reveal the physical and chemical basis of urea selectivity.

106 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
86% related
Calcium
78.5K papers, 2.2M citations
85% related
Fatty acid
74.5K papers, 2.2M citations
82% related
Ascorbic acid
93.5K papers, 2.5M citations
80% related
Glutathione
42.5K papers, 1.8M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,000
20221,982
2021433
2020502
2019589
2018557