scispace - formally typeset
Search or ask a question
Topic

Urea

About: Urea is a research topic. Over the lifetime, 21394 publications have been published within this topic receiving 382444 citations. The topic is also known as: carbamide & carbonic acid diamide.


Papers
More filters
Journal ArticleDOI
TL;DR: N levels affected N metabolism of steers more when they are fed gamagrass than when they were fed switchgrass, with a greater efficiency of N use at low N intakes.
Abstract: The effects of two forage species and N levels on urea kinetics and whole-body N metabolism were evaluated in eight Angus steers (initial BW 217+/-15 kg). In a replicated, 4 x 4 Latin square design, steers were fed gamagrass (Tripsacum dactyloides L.) or switchgrass (Panicum virgatum L.), each of which had 56.2 (LO) or 168.5 (HI) kg of N fertilization per hectare. Diets provided adequate energy for 0.5 kg ADG. Nitrogen balance and urea kinetics were measured from d 22 to 27 of each period. Urine samples collected during intravenous infusion of bis 15N urea were used to calculate production and recycling of urea N from relative abundance of urea isotopomers. Jugular blood serum was analyzed for serum urea N (SUN). Gamagrass differed from switchgrass (P < 0.05) in daily DMI (4,273 vs 4,185 g), N intake (72 vs 67 g), DM digestibility (61.0 vs 63.6%), fecal N (30.6 vs 28.3 g/d), urine urea N (10.5 vs 8.0 g/d), and percentage of urinary N present as urea N (53.5 vs 40.0%). After adjustment for differences in N intake, fecal N still tended to be greater (P < 0.09) for gamagrass than for switchgrass. The LO differed from the HI (P < 0.01) in daily N intake (63 vs 76 g), DM digestibility (61.3 vs 63.3%), urine N (13.6 vs 25.9 g/d), and N retained as a percentage of N digested (57.3 vs 43.5%). Compared to switchgrass, gamagrass had greater SUN, N digestibility, and N digested as N level increased (forage x N level interactions, P < 0.05). As N level increased, N retention increased from 19.5 to 23.5 g/d in gamagrass and decreased from 20.5 to 18.1 g/d in switchgrass (interaction, P < 0.07). The HI group was greater than the LO intake group (P < 0.03) in endogenous production of urea N (44.4 vs 34.0 g/d), gut entry rate of urea N (31.6 vs 28.2 g/d), and the amount of urea N that re-entered the ornithine cycle (9.4 vs 7.9 g/d). However, the percentage of urea N entering the gastrointestinal tract that was recycled was constant among treatments (29.1%), indicating that almost 70% of the urea N that entered the gastrointestinal tract was potentially available for anabolic purposes of the steers as a component of microbial products that were absorbed or excreted in the feces. In summary, N levels affected N metabolism of steers more when they were fed gamagrass than when they were fed switchgrass. Although the absolute amounts of N moving through the system changed with variations in intake, the proportions remained similar, with a greater efficiency of N use at low N intakes.

94 citations

Journal ArticleDOI
TL;DR: Data indicate that the same pathway occurred in another pseudomonad and a strain of Klebsiella pneumoniae, and each substrate was entirely metabolized concomitantly with growth.
Abstract: The degradative pathway of cyanuric acid [1,3,5-triazine-2,4,6(1H,3H,5H)-trione] was examined in Pseudomonas sp. strain D. The bacterium grew with cyanuric acid, biuret, urea or NH4+ as sole source of nitrogen, and each substrate was entirely metabolized concomitantly with growth. Enzymes from strain D were separated by chromatography on DEAE-cellulose and three reactions were examined. Cyanuric acid (1 mol) was converted stoichiometrically into 1.0 mol of CO2 and 1.1 mol of biuret, which was conclusively identified. Biuret (1 mol) was converted stoichiometrically into 1.1 mol of NH4+, about 1 mol of CO2 and 1.0 mol of urea, which was conclusively identified. Urea (1 mol) was converted into 1.9 mol of NH4+ and 1.0 mol of CO2. The reactions proceeded under aerobic or anoxic conditions and were presumed to be hydrolytic. Data indicate that the same pathway occurred in another pseudomonad and a strain of Klebsiella pneumoniae.

94 citations

Journal ArticleDOI
TL;DR: Simulation results showed that hydrogen-bonding properties such as the average number of hydrogen bonds and their lifetime distributions were nearly constant at all concentrations between infinite dilution and the solubility limit, implying that the characterization of urea-water solutions in the molarity concentration scale as nearly ideal is a result of facile local hydrogen bonding rather than a global property.
Abstract: We performed molecular dynamics simulations of urea solutions at different concentrations with two urea models (OPLS and KBFF) to examine the structures responsible for the thermodynamic solution properties. Our simulation results showed that hydrogen-bonding properties such as the average number of hydrogen bonds and their lifetime distributions were nearly constant at all concentrations between infinite dilution and the solubility limit. This implies that the characterization of urea−water solutions in the molarity concentration scale as nearly ideal is a result of facile local hydrogen bonding rather than a global property. Thus, urea concentration does not influence the local propensity for hydrogen bonds, only how they are satisfied. By comparison, the KBFF model of urea donated fewer hydrogen bonds than OPLS. We found that the KBFF urea model in TIP3P water better reproduced the experimental density and diffusion constant data. Preferential solvation analysis showed that there were weak urea−urea an...

94 citations

Patent
03 Feb 1993
TL;DR: In this paper, a fine flow channel with diversions and holes or slots is proposed for the effective catalytic reduction of NOx from oxygen-containing exhaust gases using urea, which can be quantitatively converted in this manner into ammonia and carbon dioxide without formation of harmful byproducts.
Abstract: For the effective catalytic reduction of NOx from oxygen-containing exhaust gases using urea, a device is proposed which contains a hydrolysis catalyst (3 and 4), which is composed of fine flow channels, which admit part-streams through diversions and through holes or slots, which part-streams are oriented approximately perpendicularly to the main stream. By this means, a uniform distribution of the urea solution and very rapid heating of the solution is to be effected. The urea solution can be quantitatively converted in this manner into ammonia and carbon dioxide without formation of harmful byproducts.

94 citations

Journal ArticleDOI
TL;DR: UT-A2 is important for maintaining a high concentration of urea in the inner medulla when urea supply to the kidney is limited, and is implicated in urea recycling in the medulla, thereby producing concentrated urine.
Abstract: Urea transporter UT-A2, the major urea transporter of the thin descending limb of the loop of Henle in short loop nephrons, has been implicated in urea recycling in the medulla, thereby producing concentrated urine. To investigate the physiological role of UT-A2 in vivo, we generated UT-A2-selective knockout mice by deleting the UT-A2 promoter. Western analysis, immunohistochemistry, and quantitative reverse transcription-PCR were used to confirm the specific deletion of UT-A2 with preservation of other UT-A transporters. Compared to wild-type mice, differences in the urine outputs of UT-A2(-/-) mice consuming a normal protein diet (20% protein) were not observed under normal conditions or with dehydration. Likewise, impairment of urea accumulation in the inner medulla of UT-A2(-/-) mice was not observed. On a low-protein diet (4% protein), however, significantly reduced maximal urine osmolality was observed in dehydrated UT-A2(-/-) mice compared to wild-type littermates (2,500 mosmol versus 3,450 mosmol, respectively). A significant reduction in urea accumulation in the inner medulla was also observed in UT-A2(-/-) mice; however, differences in Na(+) and Cl(-) accumulation were not observed. Thus, UT-A2 is important for maintaining a high concentration of urea in the inner medulla when urea supply to the kidney is limited.

94 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
86% related
Calcium
78.5K papers, 2.2M citations
85% related
Fatty acid
74.5K papers, 2.2M citations
82% related
Ascorbic acid
93.5K papers, 2.5M citations
80% related
Glutathione
42.5K papers, 1.8M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,000
20221,982
2021433
2020502
2019589
2018557