scispace - formally typeset
Search or ask a question
Topic

Urea

About: Urea is a research topic. Over the lifetime, 21394 publications have been published within this topic receiving 382444 citations. The topic is also known as: carbamide & carbonic acid diamide.


Papers
More filters
Journal ArticleDOI
19 Feb 1999-Langmuir
TL;DR: Upon the addition of small amounts of sodium dodecyl sulfate (SDS), the helicity of human serum albumin (HSA), lost in the urea denaturation, was mostly recovered, and the SDS denaturation finally predominates over the u Andrea denaturation.
Abstract: Upon the addition of small amounts of sodium dodecyl sulfate (SDS), the helicity of human serum albumin (HSA), lost in the urea denaturation, was mostly recovered. The profile of the recovery differed depending on the urea concentration. Then the urea concentrations were divided into three ranges: [1] a range below 3 M where the helicity only decreased as in the absence of urea (the helicity decreased down to 49% in the SDS solution); [2] a range between 4 and 8 M where the helicity initially increased up to 66% (this was the same as in the native state) and then sharply decreased; [3] a range above 9 M where the helicity only increased with an increase in added SDS concentration. When SDS was added prior to the urea denaturation, the same helicity was obtained at each surfactant concentration. Thus the SDS denaturation finally predominates over the urea denaturation. In the middle range, profiles of the structural change were rather complicated. The increase and decrease of helicity were accomplished be...

89 citations

Journal ArticleDOI
TL;DR: Water, urea and glucose reabsorption have been studied simultaneously using the inulin clearance method and the percentage of the filtered urea which is reabsorbed varies with the concentration in the plasma, ranging from 70% to 99.5%, comparing quite favorably with the re absorption of glucose.
Abstract: 1. Water, urea and glucose reabsorption have been studied simultaneously using the inulin clearance method.2. Variations in filtration rate appear to be due to changes in the number of functional glomeruli, rather than to changes in the rate of function of individual units.3. Glucose reabsorption is not correlated in any way with that of urea.4. The main factor controlling the urea reabsorption is the concentration of urea occurring normally in the plasma. Attempts to increase the reabsorption of urea by raising the plasma level result in a depression of reabsorption not only of urea but of glucose and water as well. To some extent this reduced water reabsorption is offset by a decreased filtration rate, with the result that only a very moderate diuresis ensues.5. The percentage of the filtered urea which is reabsorbed varies with the concentration in the plasma, ranging from 70% to 99.5%, comparing quite favorably with the reabsorption of glucose.6. On the average, the actual amount of unabsorbed urea le...

89 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss current knowledge in ureolytic bacterial populations, urease activities and factors affecting them, urea metabolism by microorganisms, and the application of inhibitors of urea activity in livestock animals.

88 citations

Journal ArticleDOI
TL;DR: The first prokaryotic urea carboxylase (UCA) from a member of the alpha subclass of the class Proteobacteria, Oleomonas sagaranensis is identified, suggesting that the UCA of this organism may be involved in the assimilation of these compounds as nitrogen sources.
Abstract: We identified the first prokaryotic urea carboxylase (UCA) from a member of the alpha subclass of the class Proteobacteria, Oleomonas sagaranensis. This enzyme (O. sagaranensis Uca) was composed of 1,171 amino acids, and its N-terminal region resembled the biotin carboxylase domains of various biotin-dependent carboxylases. The C-terminal region of the enzyme harbored the Met-Lys-Met motif found in biotin carboxyl carrier proteins. The primary structure of the enzyme was 45% identical to that of the urea carboxylase domain of urea amidolyase from Saccharomyces cerevisiae. O. sagaranensis Uca did not harbor the allophanate hydrolase domain found in the yeast enzyme, but a separate gene with structural similarity was found to be adjacent to the uca gene. Purified recombinant O. sagaranensis Uca displayed ATP-dependent carboxylase activity towards urea (Vmax = 21.2 μmol mg−1 min−1) but not towards acetyl coenzyme A (acetyl-CoA) and propionyl-CoA, indicating that the gene encoded a bona fide UCA and not an acetyl-CoA or propionyl-CoA carboxylase. The enzyme also exhibited high levels of activity towards acetamide and formamide. Kinetic parameters of the enzyme reaction were determined with ATP, urea, acetamide, and formamide. O. sagaranensis could grow on urea, acetamide, and formamide as sole nitrogen sources; moreover, ATP-dependent urea-degrading activity was found in cells grown with urea but not in cells grown with ammonia. The results suggest that the UCA of this organism may be involved in the assimilation of these compounds as nitrogen sources. Furthermore, orthologues of the O. sagaranensis uca gene were found to be widely distributed among Bacteria. This implies that there are two systems of urea degradation in Bacteria, a pathway catalyzed by the previously described ureases and the UCA-allophanate hydrolase pathway identified in this study.

88 citations

Journal ArticleDOI
TL;DR: It is hypothesized that HAs can inhibit the change in microbial community composition and numbers, as well as AOB population size, by reducing the hydrolysis rate from urea to ammonium in soils amended with urea.
Abstract: Humic acids (HAs) play an important role in the global nitrogen cycle by influencing the distribution, bioavailability, and ultimate fate of organic nitrogen. Ammonium oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in ecosystems and is limited, in part, by the availability of [Formula: see text]. We evaluated the impact of HAs on soil AOB in microcosms by applying urea (1.0%, equal to 10 mg urea/g soil) with 0.1% bHA (biodegraded lignite humic acids, equal to 1 mg/g soil), 0.1% cHA (crude lignite humic acids) or no amendment. AOB population size, ammonium and nitrate concentrations were monitored for 12 weeks after urea and HA application. AOB densities (quantified by real-time PCR targeting the amoA) in the Urea treatments increased about ten-fold (the final abundance: 5.02 × 10(7) copies (g of dry soil)(-1)) after one week of incubation and decreased to the initial density after 12 weeks incubation; the population size of total bacteria (quantified by real-time PCR with a universal bacterial probe) decreased from 1.12 × 10(10) to 2.59 × 10(9) copies (g of dry soil)(-1) at week one and fluctuated back to the initial copy number at week 12. In the Urea + bHA and Urea + cHA treatments, the AOB densities were 4 and 6 times higher, respectively, than the initial density of approximately 5.07 × 10(6) copies (g of dry soil)(-1) at week 1 and did not change much up to week 4; the total bacteria density changed little over time. The AOB and total bacteria density of the controls changed little during the 12 weeks of incubation. The microbial community composition of the Urea treatment, based on T-RFLP using CCA (canonical correspondence analysis) and pCCA (partial CCA) analysis, was clearly different from those of other treatments, and suggested that lignite HAs buffered the change in diversity and quantity of total bacteria caused by the application of urea to the soil. We hypothesize that HAs can inhibit the change in microbial community composition and numbers, as well as AOB population size by reducing the hydrolysis rate from urea to ammonium in soils amended with urea.

88 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
86% related
Calcium
78.5K papers, 2.2M citations
85% related
Fatty acid
74.5K papers, 2.2M citations
82% related
Ascorbic acid
93.5K papers, 2.5M citations
80% related
Glutathione
42.5K papers, 1.8M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,000
20221,982
2021433
2020502
2019589
2018557