scispace - formally typeset
Search or ask a question
Topic

Urea

About: Urea is a research topic. Over the lifetime, 21394 publications have been published within this topic receiving 382444 citations. The topic is also known as: carbamide & carbonic acid diamide.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, electron spin resonance spectroscopy of cationic ((4-(trimethylammonio)-2,2,6,6-tetramethylpiperidinyl)-1-oxyiodide Temp-TMA + ) and nonionic spin probes has been studied.
Abstract: Electron spin resonance spectroscopy of cationic ((4-(trimethylammonio)-2,2,6,6-tetramethylpiperidinyl)-1-oxyiodide Temp-TMA + ) and nonionic spin probes ((4-octanoyl-2,2,6,6-tetramethylpiperidinyl)-1-oxy, C 8 -TEMPO, and x-doxylstearic acid with the nitroxide group in position x=5, 12, and 16, along the stearic acid chain, 5-DSA, 12-DSA, and 16-DSA has been studied in sodium dodecyl sulfate and in dodecyltrimethylammonium bromide solutions as a function of surfactant and urea concentration

88 citations

Patent
27 Sep 1991
TL;DR: In this article, a method for reducing NOx in a combustion exhaust gas stream from a boiler is described, which includes the steps of converting an aqueous solution of urea to ammonia by heating the urea solution to a temperature of 350°-650° F. in an injection lance system.
Abstract: A method is provided for reducing NOx in a combustion exhaust gas stream from a boiler. The method includes the steps of converting an aqueous solution of urea to ammonia by heating the urea solution to a temperature of 350°-650° F. in an injection lance system. The urea solution is pressurized to the pressure required to keep urea reaction products in the liquid phase and is contacted for a selected time with a conversion catalyst selected from the group of metals, metal oxides, or metal compounds consisting of chromium or molybdenum to provide a converted urea solution. The converted urea solution is injected from the injection lance system into the combustion exhaust gas for reducing NOx.

88 citations

Journal ArticleDOI
TL;DR: H. pylori-induced ammonia is an essential determinant of its cell toxicity as well as its adherence properties, which allow a high concentration of ammonia at the cellular level.
Abstract: Former studies have shown that Helicobacter pylori can induce vacuolation of vacuolation of epithelial cells in vitro and possibly in vivo, either by direct action of a cytotoxin or by the action of its strong urease, which breaks down the urea physiologically present in the stomach into cytotoxic ammonia. We have developed a test using HEp2 cells with adherent H. pylori bacteria in order to compare the effects of an H. pylori urease-negative variant with those of its urease-positive parent strain in the presence of 10 mM urea. The level of ammonia production as well as cell vacuolation and viability were monitored for 72 h. The ammonia produced (20 mM) was found to be the essential determinant of the degree of cell vacuolation and viability of HEp2 cells. However, the addition of acetohydroxamic acid (200 mg/liter), a potent urease inhibitor which inhibits ammonia production, did not completely restore cell growth, suggesting the difficulty of neutralizing the ammonia in the vicinity of the cells. Antibodies directed against H. pylori did not neutralize the urease activity. When H. mustelae was tested in the same manner, the detrimental effects were not observed because a lower quantity of ammonia (5 mM) was generated. This was due to a lower urease activity, although the adherence properties of H. mustelae were different from those of H. pylori both quantitatively (greater adherence) and qualitatively (localized instead of diffuse adherence). We conclude that H. pylori-induced ammonia is an essential determinant of its cell toxicity as well as its adherence properties, which allow a high concentration of ammonia at the cellular level. Images

88 citations

Journal ArticleDOI
TL;DR: The copper- and zinc-containing superoxide dismutase of bovine erythrocytes retains its native molecular weight of 32 000 in 8.0 M urea for at least 72 h at 25 degrees C, as evidenced by sedimentation equilibrium analysis.
Abstract: The copper- and zinc-containing superoxide dismutase of bovine erythrocytes retains its native molecular weight of 32 000 in 8.0 M urea for at least 72 h at 25 degrees C, as evidenced by sedimentation equilibrium analysis. Subsequent to prolonged exposure to urea, the dimeric enzyme could be dissociated by sodium dodecyl sulfate in the absence of reductants, indicating the absence of unnatural disulfide cross-links. The sulfhydryl group of cysteine-6 was unreactive toward 5,5'-dithiobis(2-nitrobenzoic acid) or bromoacetic acid in both neutral buffer and 8.0 M urea. The histidine residues of the enzyme were resistant to carboxymethylation in neutral buffer and 8.0 M urea. However, when the enzyme was exposed to bromoacetic acid in the presence of 6.0 M guanidinium chloride and 1 mM (ethylenedinitriol)tetraacetic acid (EDTA), both sulfhydryl and histidine alkylation were observed. Guanidinium chloride (6.0 M) increased the reactivity of the sulfhydryl group of cysteine-6 and allowed the oxidative formation of disulfide-bridged dimers. This was prevented by 1 mM EDTA. It follows that 8.0 M urea neither dissociates the native enzyme into subunits nor produces a conformation detectably different than that possessed under native conditions.

88 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
86% related
Calcium
78.5K papers, 2.2M citations
85% related
Fatty acid
74.5K papers, 2.2M citations
82% related
Ascorbic acid
93.5K papers, 2.5M citations
80% related
Glutathione
42.5K papers, 1.8M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,000
20221,982
2021433
2020502
2019589
2018557