scispace - formally typeset
Search or ask a question
Topic

Valence (chemistry)

About: Valence (chemistry) is a research topic. Over the lifetime, 24937 publications have been published within this topic receiving 645252 citations. The topic is also known as: valency.


Papers
More filters
Journal ArticleDOI
TL;DR: The limits of EELS are explored in the study of chemical reactions in their native environments in real time and on the nanometer scale and it is found that liquids appear to follow the free-electron model that has been previously established for solids.
Abstract: In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector, and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS for studying chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in aqueous solution. The potential for using valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insight into the local electronic structure of nanoparticles and chemical reactions.

117 citations

Journal ArticleDOI
TL;DR: In this article, the authors employed the bond valence method to identify materials with crystal structures featuring infinite networks of pathways of suitable size that is a prerequisite for fast ion transport, and carried out exhaustive analysis of ~13,000 entries of the Inorganic Crystal Structure Database and ranked the materials based on the fraction of crystal structure space with low bond-valence mismatch.

116 citations

Journal ArticleDOI
TL;DR: In this article, experimental and theoretical evidence for a "sigma aromatic" bimetallic cluster is presented, and a mass spectrometric analysis of AuNZn+ photofragments shows Au5Zn+ to be very abundant, proving its high stability.
Abstract: Experimental and theoretical evidence for a "sigma aromatic" bimetallic cluster is presented. A mass spectrometric analysis of AuNZn+ (N = 2-44) photofragments shows Au5Zn+ to be very abundant, proving its high stability. Calculations predict that Au5Zn+ has a planar geometry and six valence s electrons occupying delocalized sigma-bonded molecular orbitals in a manner similar to that of aromatic organic compounds, except for their nodal properties in the molecular plane. The delocalized sigma electrons provide diamagnetic ring currents, suggesting Au5Zn+ is aromatic.

116 citations


Network Information
Related Topics (5)
Excited state
102.2K papers, 2.2M citations
92% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Band gap
86.8K papers, 2.2M citations
91% related
Amorphous solid
117K papers, 2.2M citations
89% related
Oxide
213.4K papers, 3.6M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,521
20222,997
2021616
2020611
2019584
2018577