scispace - formally typeset
Search or ask a question
Topic

Valence (chemistry)

About: Valence (chemistry) is a research topic. Over the lifetime, 24937 publications have been published within this topic receiving 645252 citations. The topic is also known as: valency.


Papers
More filters
Journal ArticleDOI
TL;DR: The ETS-NOCV scheme offers a compact, qualitative, and quantitative picture of the chemical bond formation within one common theoretical framework and can be widely used for the description of different types of chemical bonds.
Abstract: In the present study we have introduced a new scheme for chemical bond analysis by combining the Extended Transition State (ETS) method [Theor. Chim. Acta 1977, 46, 1] with the Natural Orbitals for Chemical Valence (NOCV) theory [J. Phys. Chem. A 2008, 112, 1933; J. Mol. Model. 2007, 13, 347]. The ETS-NOCV charge and energy decomposition scheme based on the Kohn−Sham approach makes it not only possible to decompose the deformation density, Δρ, into the different components (such as σ, π, δ, etc.) of the chemical bond, but it also provides the corresponding energy contributions to the total bond energy. Thus, the ETS-NOCV scheme offers a compact, qualitative, and quantitative picture of the chemical bond formation within one common theoretical framework. Although, the ETS-NOCV approach contains a certain arbitrariness in the definition of the molecular subsystems that constitute the whole molecule, it can be widely used for the description of different types of chemical bonds. The applicability of the ETS-...

1,193 citations

Journal ArticleDOI
TL;DR: In this article, the SDB-cc-pVQZ pseudopotential basis set was optimized for use with the large core (valence-electrons only) Stuttgart-Dresden-Bonn relativistic pseudopotentials.
Abstract: We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga–Kr and In–Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart–Dresden–Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes o...

1,179 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that all ions with an isoelectronic core can be fitted by a single pair of parameters, R0 and N, that are independent of the ionic character of the bond and the coordination number of the cation.
Abstract: Bond-strength-bond-length relationships for bonds between oxygen and H+, Li+, Be2+, B3+, Na+, Mg2+, Al3+, Si4+, P5+, S6+, K+, Ca2+, Sc3+, Ti4+, V5+, Cr6+, Mn2+, Fe3+, Fe2+, Co2+, Cu2+, Zn2+, Ga3+, Ge4+ and As5+ have been derived by requiring that the sums of the bond strengths around the cations be equal to their valence in 417 crystals whose structures have been accurately determined. The relationship is of the form s = (R/R0)-N where s = bond strength, R = bond length and R0 and N are fitted constants. It is further shown that all ions with an isoelectronic core can be fitted by a single pair of parameters, R0 and N, that are independent of the ionic character of the bond and the coordination number of the cation. The resulting bond strengths have the property that they are directly related to the covalent character of the bond and that their sum around each atom is, on average, within about 5% of its valence. The bond-strength-bond-length curves are particularly useful in accounting for bonding in cases where the coordination is very distorted (e.g. Na+, Cu2+ and V5+). They can also be used to predict the positions of hydrogen atoms, to analyze for different oxidation states and site occupancies, to calculate ionic radii and to provide an indication of the correctness of crystal structure determinations.

1,170 citations

Journal ArticleDOI
TL;DR: In this paper, a complete set of effective core potentials (ECPs) and valence basis sets for the lanthanides (Ce to Lu) are derived, and the results of atomic calculations indicate that the greatest error vs highly accurate numerical potential/large, eventempered basis set calculations results from replacement of the large, even-tempered base sets with more compact representations.
Abstract: In this paper a complete set of effective core potentials (ECPs) and valence basis sets for the lanthanides (Ce to Lu) are derived. These ECPs are consistent not only within the lanthanide series, but also with the third‐row transition metals which bracket them. A 46‐electron core was chosen to provide the best compromise between computational savings and chemical accuracy. Thus, the 5s and 5p are included as ‘‘outer’’ core while all lower energy atomic orbitals (AOs) are replaced with the ECP. Generator states were chosen from the most chemically relevant +3 and +2 oxidation states. The results of atomic calculations indicate that the greatest error vs highly accurate numerical potential/large, even‐tempered basis set calculations results from replacement of the large, even‐tempered basis sets with more compact representations. However, the agreement among atomic calculations remains excellent with both basis set sizes, for a variety of spin and oxidation states, with a significant savings in time for the optimized valence basis set. It is expected that the compact representation of the ECPs and valence basis sets will eventually encourage their use by computational chemists to further explore the bonding and reactivity of lanthanide complexes.

1,119 citations

Journal ArticleDOI
TL;DR: In this article, a model for the structure and properties of active centers in lone-pair semiconductors, based on the possibility of unique bonding configurations which can arise from the presence of nonbonding orbitals, is presented.
Abstract: A model is presented for the structure and properties of active centers in lone-pair semiconductors, based on the possibility of unique bonding configurations which can arise from the presence of nonbonding orbitals. It is shown that the lowest-energy neutral center is unstable towards the creation of different positively and negatively charged centers, thus resulting in a negative effective correlation energy. These centers yield gap states which explain the unusual properties of lone-pair semiconductors.

1,088 citations


Network Information
Related Topics (5)
Excited state
102.2K papers, 2.2M citations
92% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Band gap
86.8K papers, 2.2M citations
91% related
Amorphous solid
117K papers, 2.2M citations
89% related
Oxide
213.4K papers, 3.6M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,521
20222,997
2021616
2020611
2019584
2018577