scispace - formally typeset
Search or ask a question
Topic

Vanadate

About: Vanadate is a research topic. Over the lifetime, 4497 publications have been published within this topic receiving 120109 citations. The topic is also known as: vanadate.


Papers
More filters
Journal ArticleDOI
TL;DR: The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.
Abstract: A nucleoside triphosphatase (NTPase) present in highly purified preparations of pea nuclei was partially characterized. The activity of this enzyme was stimulated by divalent cations (Mg2+ = Mn2+ > Ca2+), but was not affected by the monovalent cations, Na+ and K+. The Mg(2+)-dependent activity was further stimulated by concentrations of Ca2+ in the low micromolar range. It could catalyze the hydrolysis of ATP, GTP, UTP, and CTP, all with a pH optimum of 7.5. The nuclear NTPase activity was not inhibited by vanadate, oligomycin, or nitrate, but was inhibited by relatively low concentrations of quercetin and the calmodulin inhibitor, compound 48/80. The NTPase was stimulated more than 50% by red light, and this effect was reversed by subsequent irradiation with far-red light. The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.

41 citations

Journal ArticleDOI
TL;DR: The data indicate the presence of an electrogenic H+ pump in endocytotic vesicles from rat renal proximal tubules with similar characteristics as H+ pumps present in various intracellular (nonmitochondrial) membranes.
Abstract: The characteristics of the H+ pump in isolated rat renal endocytotic vesicles were studied by the delta pH-sensitive dye acridine orange, the voltage-sensitive dye 3,3'-dipropylthiadicarbocyanine iodide, and by a coupled optical ATPase assay. Intravesicular acidification depended on ATP and Mg2+ concentrations with half-maximal activations at 73 and 77 microM, respectively. CTP, GTP, UTP, and ITP partially supported acidification, but ADP and AMP did not. Ouabain, ethoxzolamide, levamisole, and vanadate did not inhibit H+ uptake into endocytotic vesicles. Oligomycin inhibited partially. Depending on concentration and preincubation time, Dio-9, filipin, N-ethylmaleimide (NEM), and dicyclohexylcarbodiimide (DCCD) inhibited H+ uptake completely. Filipin and, partially, DCCD acted nonspecifically by dissipating pH gradients. A specific cation was not required for the H+ pump; Zn2+ inhibited. Compared with mannitol, ATP-driven H+ uptake was stimulated by SCN- greater than Cl- greater than Br- greater than I- much greater than HPO4(2-) = gluconate = HCO3- = F-, but not by SO4(2-), NO3-, CH3COO-, S2O3(2-), and S4O6(2-). Chloride stimulated H+ uptake from the outside of the vesicles with an apparent Km of 27 mM. In the absence of Cl-, ATP-driven proton uptake was increased by intravesicular K+ and valinomycin, suggesting that the pump is electrogenic. The electrogenicity, however, could not be demonstrated with voltage-sensitive dyes. The vesicle membrane contains no significant K+ and Cl- conductances; only a conductance for H+ was found. The vesicles exhibited an ouabain-, oligomycin-, and vanadate-insensitive ATPase activity that was inhibited by DCCD and NEM. Our data indicate the presence of an electrogenic H+ pump in endocytotic vesicles from rat renal proximal tubules with similar characteristics as H+ pumps present in various intracellular (nonmitochondrial) membranes.

41 citations

Journal ArticleDOI
TL;DR: The data indicate that a late event in the sequence that ultimately leads to enhanced glucose transport activity in fat cells is specifically inhibited by trifluoperazine, possibly involved in the exocytic reaction that recruits glucose-transport activity from storage sites to the plasma membranes.
Abstract: One of the specific inhibitors of calmodulin action, trifluoperazine, blocked the stimulating action of insulin on 2-deoxyglucose uptake and glucose metabolism. The inhibitory effect of insulin on lipolysis was not altered by the drug. The active (insulin-stimulated) state and the basal state of lipogenesis were inhibited half-maximally at 80 and 550 microM trifluoperazine, respectively. 2-Deoxyglucose uptake was inhibited half-maximally at a trifluoperazine concentration of 70 microM. Other less potent calmodulin inhibitors also inhibited glucose metabolism in fat cells but in a nonspecific manner. The inhibition was noncompetitive and was not altered in Ca2+- free medium. The stimulating activity of wheat germ agglutinin and of sodium vanadate were also inhibited by trifluoperazine. The dose-dependent inhibitions were indistinguishable whether the active (stimulated) state was produced by insulin, wheat germ agglutinin, or vanadate. The data indicate that a late event in the sequence that ultimately leads to enhanced glucose transport activity in fat cells is specifically inhibited by trifluoperazine. The possible involvement of calmodulin or another related Ca2+-dependent regulatory protein in the exocytic (fusion) reaction that recruits glucose-transport activity from storage sites to the plasma membranes is discussed.

41 citations

Journal ArticleDOI
TL;DR: Significant age-differences were found in most of the parameters used as indicators of nephrotoxicity in young and adult rats, with adverse renal effects being more severe with age.

41 citations


Network Information
Related Topics (5)
Calcium
78.5K papers, 2.2M citations
82% related
Copper
122.3K papers, 1.8M citations
80% related
Amino acid
124.9K papers, 4M citations
80% related
Mitochondrion
51.5K papers, 3M citations
79% related
Phosphorylation
69.3K papers, 3.8M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023109
2022211
202178
202075
201996
201899