scispace - formally typeset
Search or ask a question
Topic

Vanadate

About: Vanadate is a research topic. Over the lifetime, 4497 publications have been published within this topic receiving 120109 citations. The topic is also known as: vanadate.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that Ca2+ transport in microsomal vesicles from 24-hour-old radish seedlings is catalyzed by a Mg2+-dependent ATPase localized on the plasma membrane, which catalyzes a nH+/Ca2+ exchange which reduces ΔpH generation and increases MgATP-dependent membrane potential difference ( Δψ) generation.
Abstract: Microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings accumulate Ca(2+) upon addition of MgATP. MgATP-dependent Ca(2+) uptake co-migrates with the plasma membrane H(+)-ATPase on a sucrose gradient. Ca(2+) uptake is insensitive to oligomycin, inhibited by vanadate (IC(50) 40 micromolar) and erythrosin B (IC(50) 0.2 micromolar) and displays a pH optimum between pH 6.6 and 6.9. MgATP-dependent Ca(2+) uptake is insensitive to protonophores. These results indicate that Ca(2+) transport in these microsomal vesicles is catalyzed by a Mg(2+)-dependent ATPase localized on the plasma membrane. Ca(2+) strongly reduces DeltapH generation by the plasma membrane H(+)-ATPase and increases MgATP-dependent membrane potential difference (Deltapsi) generation. These effects of Ca(2+) on DeltapH and Deltapsi generation are drastically reduced by micromolar erythrosin B, indicating that they are primarily a consequence of Ca(2+) uptake into plasma membrane vesicles. The Ca(2+)-induced increase of Deltapsi is collapsed by permeant anions, which do not affect Ca(2+)-induced decrease of DeltapH generation by the plasma membrane H(+)-ATPase. The rate of decay of MgATP-dependent DeltapH, upon inhibition of the plasma membrane H(+)-ATPase, is accelerated by MgATP-dependent Ca(2+) uptake, indicating that the decrease of DeltapH generation induced by Ca(2+) reflects the efflux of H(+) coupled to Ca(2+) uptake into plasma membrane vesicles. It is therefore proposed that Ca(2+) transport at the plasma membrane is mediated by a Mg(2+)-dependent ATPase which catalyzes a nH(+)/Ca(2+) exchange.

111 citations

Journal ArticleDOI
TL;DR: Amongst the transition-metal oxoanions that are known to be potent inhibitors of phosphatases, only vanadate resulted in a semi-synthetic peroxidase when incorporated into phytase, which was stable for more than 3 days with only a slight decrease in turnover frequency.

111 citations

Journal ArticleDOI
TL;DR: The results suggest that vanadium derivatives behave like growth factors on osteoblast-like cells and are potential pharmacological tools in the control of cell growth.
Abstract: The effect of different vanadium compounds on proliferation and differentiation was examined in osteoblast-like UMR106 cells. Vanadate increased the cell growth in a biphasic manner, the higher doses inhibiting cell progression. Vanadyl stimulated cell proliferation in a dose-responsive manner. Similar to vanadate, pervanadate increased osteoblast-like cell proliferation in a biphasic manner but no inhibition of growth was observed. Vanadyl and pervanadate were stronger stimulators of cell growth than vanadate. Only vanadate was able to regulate the cell differentiation as measured by cell alkaline phosphatase activity. These results suggest that vanadium derivatives behave like growth factors on osteoblast-like cells and are potential pharmacological tools in the control of cell growth.

110 citations

Journal ArticleDOI
TL;DR: The M.Vi complex has the properties of a more stable analogue of the myosin-ADP-phosphate complex that is generated in the normal ATPase cycle, whereas the actual rates of the reactions are much slower.
Abstract: Actin-myosin subfragment-1 (SF-1) or actin-heavy meromyosin is dissociated by the binding of ADP and vanadate (Vi) under conditions such that ADP alone does not dissociate the complex. The association constant of the stable complex M.ADP.Vi, in which M indicates myosin [Goodno, C. C. (1979) Proc. Natl. Acad. Sci. USA 76, 2620-2624] with actin is smaller than the average association constant of the intermediate states of the actin-SF-1 ATPase cycle. Actin-SF-1 ATPase activity is 90% inhibited by ADP plus vanadate. The reaction of actin with M.ADP.Vi produces a slow release of ADP and vanadate and quantitative recovery of ATPase activity. The rate of dissociation of ligands was almost linear in actin concentration; consequently, the rate constant of dissociation could only be roughly estimated as 0.5-1 sec-1. The rate of dissociation of ADP and vanadate is thus increased by a factor of 10(5) compared to M.ADP.Vi. The rate of release of ligands by regulated actin (actin-tropomyosin-troponin) was reduced to 1/10th to 1/20th by removal of calcium ion. Therefore the M.ADP.Vi complex has the properties of a more stable analogue of the myosin-ADP-phosphate complex that is generated in the normal ATPase cycle. The activation of ligand release (ratio of rate of dissociation of ADP and vanadate from actomyosin relative to myosin) is much larger than the activation of myosin ATPase by actin, whereas the actual rates of the reactions are much slower.

110 citations


Network Information
Related Topics (5)
Calcium
78.5K papers, 2.2M citations
82% related
Copper
122.3K papers, 1.8M citations
80% related
Amino acid
124.9K papers, 4M citations
80% related
Mitochondrion
51.5K papers, 3M citations
79% related
Phosphorylation
69.3K papers, 3.8M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023109
2022211
202178
202075
201996
201899