scispace - formally typeset
Search or ask a question
Topic

Vanadate

About: Vanadate is a research topic. Over the lifetime, 4497 publications have been published within this topic receiving 120109 citations. The topic is also known as: vanadate.


Papers
More filters
Journal ArticleDOI
TL;DR: In vitro evidence is provided that the Mg(2+)/KCl-ATPase of higher plants is an electrogenic pump, consistent with the hypothesis that an electrogensic H(+) pump is catalyzed by the plasma membrane ATPase of plants.
Abstract: The function of the Mg2+-requiring KCl-stimulated ATPase (ATP phosphohydrolase, EC 3.6.1.3) of higher plants in active ion transport was investigated by using a purified microsomal fraction containing sealed plasma membrane vesicles. (Sze, H. (1980) Proc. Natl. Acad. Sci. USA 77, 5904-5908). A transmembrane electrical potential (+30 to +44 mV), monitored by uptake of a permeant anion (35SCN-), was generated specifically by ATP in purified microsomal vesicles of tobacco callus. ATP-dependent 35SCN- uptake required Mg2+, was optimal at pH 6.75, and showed similar ATP concentration dependence as the Mg2+-requiring KCl-stimulated ATPase activity. Plasma membrane ATPase inhibitors (N,N′-dicyclohexylcarbodiimide and vanadate) inhibited generation of the ATP-dependent electrical potential. A proton conductor (carbonyl cyanide m-chlorophenylhydrazone), but not a K+ ionophore (valinomycin), completely collapsed the electrical potential. The results provide in vitro evidence that the Mg2+/KCl-ATPase of higher plants is an electrogenic pump. These results are consistent with the hypothesis that an electrogenic H+ pump is catalyzed by the plasma membrane ATPase of plants.

70 citations

Journal ArticleDOI
TL;DR: The first transition state-like structure of F1 (ADP·Vi·Mg·F1) from rat liver that was crystallized with the phosphate (Pi) analog vanadate (VO3-4 or Vi) is reported.

70 citations

Journal Article
TL;DR: Detailed studies ofVanadate-initiated inhibition of enzymes will expand the understanding of the various mechanisms of action of vanadate and its derivatives that have been briefly described here and will doubtless provide insight into other functions of this unique material.
Abstract: The chemical similarities between vanadate and phosphate combined with the ability of vanadate to readily undergo changes in coordination geometry allows this ion to strongly influence the function of a large variety of phosphate-metabolizing enzymes. As transition state analogs, spontaneously formed vanadate complexes are potent inhibitors of a number of enzymes, including some ribonucleases, mutases, and phosphatases. In addition, vanadate is an effective inhibitor of many ATPases, kinases, lyases, and synthases. Vanadate oligomers tend to be weaker inhibitors than vanadate but do influence the function of dehydrogenases, mutases, aldolases, kinases, and others. Of the oligomers, decavanadate is unique in that it seems to bind only in polyphosphate binding domains. Peroxovanadate has not yet been well studied but it seems to inhibit enzymes that do not utilize a pentacoordinate vanadate in the catalysis cycle. Additional detailed studies of vanadate-initiated inhibition of enzymes will expand our understanding of the various mechanisms of action of vanadate and its derivatives that have been briefly described here and will doubtless provide insight into other functions of this unique material.

70 citations

Journal ArticleDOI
TL;DR: Oral administration in vivo experiments on the blood glucose level of streptozotocin-induced diabetes mice and the insulin-mimetic effects of metal-oxide clusters of all-inorganic composition suggest that not only monomeric tungstate and vanadate, but also the structure factors of tung state andVanadate clusters, can play a significant role in their biological action.

70 citations


Network Information
Related Topics (5)
Calcium
78.5K papers, 2.2M citations
82% related
Copper
122.3K papers, 1.8M citations
80% related
Amino acid
124.9K papers, 4M citations
80% related
Mitochondrion
51.5K papers, 3M citations
79% related
Phosphorylation
69.3K papers, 3.8M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023109
2022211
202178
202075
201996
201899