scispace - formally typeset
Search or ask a question
Topic

Variable-length code

About: Variable-length code is a research topic. Over the lifetime, 6132 publications have been published within this topic receiving 131657 citations. The topic is also known as: variable-length encoding.


Papers
More filters
Book
01 Jan 1968
TL;DR: This chapter discusses Coding for Discrete Sources, Techniques for Coding and Decoding, and Source Coding with a Fidelity Criterion.
Abstract: Communication Systems and Information Theory. A Measure of Information. Coding for Discrete Sources. Discrete Memoryless Channels and Capacity. The Noisy-Channel Coding Theorem. Techniques for Coding and Decoding. Memoryless Channels with Discrete Time. Waveform Channels. Source Coding with a Fidelity Criterion. Index.

6,684 citations

Journal ArticleDOI
01 Sep 1952
TL;DR: A minimum-redundancy code is one constructed in such a way that the average number of coding digits per message is minimized.
Abstract: An optimum method of coding an ensemble of messages consisting of a finite number of members is developed. A minimum-redundancy code is one constructed in such a way that the average number of coding digits per message is minimized.

5,221 citations

Journal ArticleDOI
TL;DR: The proposed concept of compressibility is shown to play a role analogous to that of entropy in classical information theory where one deals with probabilistic ensembles of sequences rather than with individual sequences.
Abstract: Compressibility of individual sequences by the class of generalized finite-state information-lossless encoders is investigated. These encoders can operate in a variable-rate mode as well as a fixed-rate one, and they allow for any finite-state scheme of variable-length-to-variable-length coding. For every individual infinite sequence x a quantity \rho(x) is defined, called the compressibility of x , which is shown to be the asymptotically attainable lower bound on the compression ratio that can be achieved for x by any finite-state encoder. This is demonstrated by means of a constructive coding theorem and its converse that, apart from their asymptotic significance, also provide useful performance criteria for finite and practical data-compression tasks. The proposed concept of compressibility is also shown to play a role analogous to that of entropy in classical information theory where one deals with probabilistic ensembles of sequences rather than with individual sequences. While the definition of \rho(x) allows a different machine for each different sequence to be compressed, the constructive coding theorem leads to a universal algorithm that is asymptotically optimal for all sequences.

3,753 citations

Book
01 Jan 1990
TL;DR: This book is an updated version of the information theory classic, first published in 1990, with expanded treatment of stationary or sliding-block codes and their relations to traditional block codes and discussion of results from ergodic theory relevant to information theory.
Abstract: This book is an updated version of the information theory classic, first published in 1990. About one-third of the book is devoted to Shannon source and channel coding theorems; the remainder addresses sources, channels, and codes and on information and distortion measures and their properties. New in this edition:Expanded treatment of stationary or sliding-block codes and their relations to traditional block codesExpanded discussion of results from ergodic theory relevant to information theoryExpanded treatment of B-processes -- processes formed by stationary coding memoryless sourcesNew material on trading off information and distortion, including the Marton inequalityNew material on the properties of optimal and asymptotically optimal source codesNew material on the relationships of source coding and rate-constrained simulation or modeling of random processesSignificant material not covered in other information theory texts includes stationary/sliding-block codes, a geometric view of information theory provided by process distance measures, and general Shannon coding theorems for asymptotic mean stationary sources, which may be neither ergodic nor stationary, and d-bar continuous channels.

1,810 citations

Journal ArticleDOI
27 Jun 2005
TL;DR: The recent development of practical distributed video coding schemes is reviewed, finding that the rate-distortion performance is superior to conventional intraframe coding, but there is still a gap relative to conventional motion-compensated interframe coding.
Abstract: Distributed coding is a new paradigm for video compression, based on Slepian and Wolf's and Wyner and Ziv's information-theoretic results from the 1970s. This paper reviews the recent development of practical distributed video coding schemes. Wyner-Ziv coding, i.e., lossy compression with receiver side information, enables low-complexity video encoding where the bulk of the computation is shifted to the decoder. Since the interframe dependence of the video sequence is exploited only at the decoder, an intraframe encoder can be combined with an interframe decoder. The rate-distortion performance is superior to conventional intraframe coding, but there is still a gap relative to conventional motion-compensated interframe coding. Wyner-Ziv coding is naturally robust against transmission errors and can be used for joint source-channel coding. A Wyner-Ziv MPEG encoder that protects the video waveform rather than the compressed bit stream achieves graceful degradation under deteriorating channel conditions without a layered signal representation.

1,342 citations


Network Information
Related Topics (5)
Decoding methods
65.7K papers, 900K citations
89% related
MIMO
62.7K papers, 959.1K citations
84% related
Fading
55.4K papers, 1M citations
83% related
Wireless network
122.5K papers, 2.1M citations
83% related
Network packet
159.7K papers, 2.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202230
20217
20201
20196
201816