scispace - formally typeset

Variable-order Bayesian network

About: Variable-order Bayesian network is a(n) research topic. Over the lifetime, 5450 publication(s) have been published within this topic receiving 265828 citation(s). more

More filters

01 Jan 1995-
TL;DR: Detailed notes on Bayesian Computation Basics of Markov Chain Simulation, Regression Models, and Asymptotic Theorems are provided. more

Abstract: FUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter. more

16,069 citations

15 Apr 1994-
Abstract: From the Publisher: The past decade has seen considerable theoretical and applied research on Markov decision processes, as well as the growing use of these models in ecology, economics, communications engineering, and other fields where outcomes are uncertain and sequential decision-making processes are needed. A timely response to this increased activity, Martin L. Puterman's new work provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models. It discusses all major research directions in the field, highlights many significant applications of Markov decision processes models, and explores numerous important topics that have previously been neglected or given cursory coverage in the literature. Markov Decision Processes focuses primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous-time discrete state models. The book is organized around optimality criteria, using a common framework centered on the optimality (Bellman) equation for presenting results. The results are presented in a "theorem-proof" format and elaborated on through both discussion and examples, including results that are not available in any other book. A two-state Markov decision process model, presented in Chapter 3, is analyzed repeatedly throughout the book and demonstrates many results and algorithms. Markov Decision Processes covers recent research advances in such areas as countable state space models with average reward criterion, constrained models, and models with risk sensitive optimality criteria. It also explores several topics that have received little or no attention in other books, including modified policy iteration, multichain models with average reward criterion, and sensitive optimality. In addition, a Bibliographic Remarks section in each chapter comments on relevant historic more

11,593 citations

Journal ArticleDOI
01 Dec 1995-Biometrika
Abstract: Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some fixed standard underlying measure. They have therefore not been available for application to Bayesian model determination, where the dimensionality of the parameter vector is typically not fixed. This paper proposes a new framework for the construction of reversible Markov chain samplers that jump between parameter subspaces of differing dimensionality, which is flexible and entirely constructive. It should therefore have wide applicability in model determination problems. The methodology is illustrated with applications to multiple change-point analysis in one and two dimensions, and to a Bayesian comparison of binomial experiments. more

5,817 citations

Journal ArticleDOI
Michael E. Tipping1Institutions (1)
TL;DR: It is demonstrated that by exploiting a probabilistic Bayesian learning framework, the 'relevance vector machine' (RVM) can derive accurate prediction models which typically utilise dramatically fewer basis functions than a comparable SVM while offering a number of additional advantages. more

Abstract: This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the 'relevance vector machine' (RVM), a model of identical functional form to the popular and state-of-the-art 'support vector machine' (SVM) We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer basis functions than a comparable SVM while offering a number of additional advantages These include the benefits of probabilistic predictions, automatic estimation of 'nuisance' parameters, and the facility to utilise arbitrary basis functions (eg non-'Mercer' kernels) We detail the Bayesian framework and associated learning algorithm for the RVM, and give some illustrative examples of its application along with some comparative benchmarks We offer some explanation for the exceptional degree of sparsity obtained, and discuss and demonstrate some of the advantageous features, and potential extensions, of Bayesian relevance learning more

5,059 citations

01 Jan 2001-
TL;DR: The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams, and presents a thorough introduction to state-of-the-art solution and analysis algorithms. more

Abstract: Probabilistic graphical models and decision graphs are powerful modeling tools for reasoning and decision making under uncertainty. As modeling languages they allow a natural specification of problem domains with inherent uncertainty, and from a computational perspective they support efficient algorithms for automatic construction and query answering. This includes belief updating, finding the most probable explanation for the observed evidence, detecting conflicts in the evidence entered into the network, determining optimal strategies, analyzing for relevance, and performing sensitivity analysis. The book introduces probabilistic graphical models and decision graphs, including Bayesian networks and influence diagrams. The reader is introduced to the two types of frameworks through examples and exercises, which also instruct the reader on how to build these models. The book is a new edition of Bayesian Networks and Decision Graphs by Finn V. Jensen. The new edition is structured into two parts. The first part focuses on probabilistic graphical models. Compared with the previous book, the new edition also includes a thorough description of recent extensions to the Bayesian network modeling language, advances in exact and approximate belief updating algorithms, and methods for learning both the structure and the parameters of a Bayesian network. The second part deals with decision graphs, and in addition to the frameworks described in the previous edition, it also introduces Markov decision processes and partially ordered decision problems. The authors also provide a well-founded practical introduction to Bayesian networks, object-oriented Bayesian networks, decision trees, influence diagrams (and variants hereof), and Markov decision processes. give practical advice on the construction of Bayesian networks, decision trees, and influence diagrams from domain knowledge. give several examples and exercises exploiting computer systems for dealing with Bayesian networks and decision graphs. present a thorough introduction to state-of-the-art solution and analysis algorithms. The book is intended as a textbook, but it can also be used for self-study and as a reference book. more

4,387 citations

Network Information
Related Topics (5)
Graphical model

10.4K papers, 415.6K citations

93% related

36.8K papers, 1.3M citations

92% related
Bayesian probability

26.5K papers, 817.9K citations

90% related
Posterior probability

13.7K papers, 475K citations

90% related
Model selection

14.3K papers, 786.2K citations

89% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Arnaud Doucet

13 papers, 1.3K citations

Zoubin Ghahramani

12 papers, 2.1K citations

David Heckerman

11 papers, 2.5K citations

Christian P. Robert

11 papers, 2.4K citations

Xinyuan Song

9 papers, 281 citations