scispace - formally typeset
Search or ask a question
Topic

Variable-order Bayesian network

About: Variable-order Bayesian network is a research topic. Over the lifetime, 5450 publications have been published within this topic receiving 265828 citations.


Papers
More filters
Dissertation
01 Jan 2003
TL;DR: A unified variational Bayesian (VB) framework which approximates computations in models with latent variables using a lower bound on the marginal likelihood and is compared to other methods including sampling, Cheeseman-Stutz, and asymptotic approximations such as BIC.
Abstract: The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents a unified variational Bayesian (VB) framework which approximates these computations in models with latent variables using a lower bound on the marginal likelihood. Chapter 1 presents background material on Bayesian inference, graphical models, and propagation algorithms. Chapter 2 forms the theoretical core of the thesis, generalising the expectation- maximisation (EM) algorithm for learning maximum likelihood parameters to the VB EM algorithm which integrates over model parameters. The algorithm is then specialised to the large family of conjugate-exponential (CE) graphical models, and several theorems are presented to pave the road for automated VB derivation procedures in both directed and undirected graphs (Bayesian and Markov networks, respectively). Chapters 3–5 derive and apply the VB EM algorithm to three commonly-used and important models: mixtures of factor analysers, linear dynamical systems, and hidden Markov models. It is shown how model selection tasks such as determining the dimensionality, cardinality, or number of variables are possible using VB approximations. Also explored are methods for combining sampling procedures with variational approximations, to estimate the tightness of VB bounds and to obtain more effective sampling algorithms. Chapter 6 applies VB learning to a long-standing problem of scoring discrete-variable directed acyclic graphs, and compares the performance to annealed importance sampling amongst other methods. Throughout, the VB approximation is compared to other methods including sampling, Cheeseman-Stutz, and asymptotic approximations such as BIC. The thesis concludes with a discussion of evolving directions for model selection including infinite models and alternative approximations to the marginal likelihood.

1,930 citations

Book
01 Oct 1997
TL;DR: Model Adequacy Model Choice: MCMC Over Model and Parameter Spaces Convergence Acceleration Exercises Further topics in MCMC are explained.
Abstract: Introduction Stochastic simulation Introduction Generation of Discrete Random Quantities Generation of Continuous Random Quantities Generation of Random Vectors and Matrices Resampling Methods Exercises Bayesian Inference Introduction Bayes' Theorem Conjugate Distributions Hierarchical Models Dynamic Models Spatial Models Model Comparison Exercises Approximate methods of inference Introduction Asymptotic Approximations Approximations by Gaussian Quadrature Monte Carlo Integration Methods Based on Stochastic Simulation Exercises Markov chains Introduction Definition and Transition Probabilities Decomposition of the State Space Stationary Distributions Limiting Theorems Reversible Chains Continuous State Spaces Simulation of a Markov Chain Data Augmentation or Substitution Sampling Exercises Gibbs Sampling Introduction Definition and Properties Implementation and Optimization Convergence Diagnostics Applications MCMC-Based Software for Bayesian Modeling Appendix 5.A: BUGS Code for Example 5.7 Appendix 5.B: BUGS Code for Example 5.8 Exercises Metropolis-Hastings algorithms Introduction Definition and Properties Special Cases Hybrid Algorithms Applications Exercises Further topics in MCMC Introduction Model Adequacy Model Choice: MCMC Over Model and Parameter Spaces Convergence Acceleration Exercises References Author Index Subject Index

1,834 citations

Journal ArticleDOI
TL;DR: A Bayesian MCMC approach to the analysis of combined data sets was developed and its utility in inferring relationships among gall wasps based on data from morphology and four genes was explored, supporting the utility of morphological data in multigene analyses.
Abstract: The recent development of Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) techniques has facilitated the exploration of parameter-rich evolutionary models. At the same time, stochastic models have become more realistic (and complex) and have been extended to new types of data, such as morphology. Based on this foundation, we developed a Bayesian MCMC approach to the analysis of combined data sets and explored its utility in inferring relationships among gall wasps based on data from morphology and four genes (nuclear and mitochondrial, ribosomal and protein coding). Examined models range in complexity from those recognizing only a morphological and a molecular partition to those having complex substitution models with independent parameters for each gene. Bayesian MCMC analysis deals efficiently with complex models: convergence occurs faster and more predictably for complex models, mixing is adequate for all parameters even under very complex models, and the parameter update cycle is virtually unaffected by model partitioning across sites. Morphology contributed only 5% of the characters in the data set but nevertheless influenced the combined-data tree, supporting the utility of morphological data in multigene analyses. We used Bayesian criteria (Bayes factors) to show that process heterogeneity across data partitions is a significant model component, although not as important as among-site rate variation. More complex evolutionary models are associated with more topological uncertainty and less conflict between morphology and molecules. Bayes factors sometimes favor simpler models over considerably more parameter-rich models, but the best model overall is also the most complex and Bayes factors do not support exclusion of apparently weak parameters from this model. Thus, Bayes factors appear to be useful for selecting among complex models, but it is still unclear whether their use strikes a reasonable balance between model complexity and error in parameter estimates.

1,758 citations

Book
08 Aug 2006
TL;DR: This book should help newcomers to the field to understand how finite mixture and Markov switching models are formulated, what structures they imply on the data, what they could be used for, and how they are estimated.
Abstract: WINNER OF THE 2007 DEGROOT PRIZE! The prominence of finite mixture modelling is greater than ever. Many important statistical topics like clustering data, outlier treatment, or dealing with unobserved heterogeneity involve finite mixture models in some way or other. The area of potential applications goes beyond simple data analysis and extends to regression analysis and to non-linear time series analysis using Markov switching models. For more than the hundred years since Karl Pearson showed in 1894 how to estimate the five parameters of a mixture of two normal distributions using the method of moments, statistical inference for finite mixture models has been a challenge to everybody who deals with them. In the past ten years, very powerful computational tools emerged for dealing with these models which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book reviews these techniques and covers the most recent advances in the field, among them bridge sampling techniques and reversible jump Markov chain Monte Carlo methods. It is the first time that the Bayesian perspective of finite mixture modelling is systematically presented in book form. It is argued that the Bayesian approach provides much insight in this context and is easily implemented in practice. Although the main focus is on Bayesian inference, the author reviews several frequentist techniques, especially selecting the number of components of a finite mixture model, and discusses some of their shortcomings compared to the Bayesian approach. The aim of this book is to impart the finite mixture and Markov switching approach to statistical modelling to a wide-ranging community. This includes not only statisticians, but also biologists, economists, engineers, financial agents, market researcher, medical researchers or any other frequent user of statistical models. This book should help newcomers to the field to understand how finite mixture and Markov switching models are formulated, what structures they imply on the data, what they could be used for, and how they are estimated. Researchers familiar with the subject also will profit from reading this book. The presentation is rather informal without abandoning mathematical correctness. Previous notions of Bayesian inference and Monte Carlo simulation are useful but not needed.

1,642 citations

Journal ArticleDOI
TL;DR: The Bayesian framework for analyzing aligned nucleotide sequence data to reconstruct phylogenies, assess uncertainty in the reconstructions, and perform other statistical inferences is developed and a Markov chain Monte Carlo sampler is employed to sample trees and model parameter values from their joint posterior distribution.
Abstract: We further develop the Bayesian framework for analyzing aligned nucleotide sequence data to reconstruct phylogenies, assess uncertainty in the reconstructions, and perform other statistical inferences. We employ a Markov chain Monte Carlo sampler to sample trees and model parameter values from their joint posterior distribution. All statistical inferences are naturally based on this sample. The sample provides a most-probable tree with posterior probabilities for each clade, information that is qualitatively similar to that for the maximum-likelihood tree with bootstrap proportions and permits further inferences on tree topology, branch lengths, and model parameter values. On moderately large trees, the computational advantage of our method over bootstrapping a maximum-likelihood analysis can be considerable. In an example with 31 taxa, the time expended by our software is orders of magnitude less than that a widely used phylogeny package for bootstrapping maximum likelihood estimation would require to achieve comparable statistical accuracy. While there has been substantial debate over the proper interpretation of bootstrap proportions, Bayesian posterior probabilities clearly and directly quantify uncertainty in questions of biological interest, at least from a Bayesian perspective. Because our tree proposal algorithms are independent of the choice of likelihood function, they could also be used in conjunction with likelihood models more complex than those we have currently implemented.

1,542 citations


Network Information
Related Topics (5)
Inference
36.8K papers, 1.3M citations
92% related
Probabilistic logic
56K papers, 1.3M citations
87% related
Cluster analysis
146.5K papers, 2.9M citations
86% related
Markov chain
51.9K papers, 1.3M citations
86% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202246
20217
20201
20197
201844