scispace - formally typeset
Search or ask a question

Showing papers on "Vascular endothelial growth factor A published in 2019"


Journal ArticleDOI
TL;DR: ASC-MVs could be readily internalized by human umbilical vein endothelial cells (HUVECs), HaCAT, and fibroblasts and significantly promoted the proliferation, migration, and angiogenesis of these cells both in vitro and in vivo.
Abstract: Human adipose stem cells (ASCs) have emerged as a promising treatment paradigm for skin wounds. Recent works demonstrate that the therapeutic effect of stem cells is partially mediated by extracellular vesicles, which comprise exosomes and microvesicles. In this study, we investigate the regenerative effects of isolated microvesicles from ASCs and evaluate the mechanisms how ASC microvesicles promote wound healing. Adipose stem cell-derived microvesicles (ASC-MVs) were isolated by differential ultracentrifugation, stained by PKH26, and characterized by electron microscopy and dynamic light scattering (DLS). We examined ASC-MV effects on proliferation, migration, and angiogenesis of keratinocytes, fibroblasts, and endothelial cells both in vitro and in vivo. Next, we explored the underlying mechanisms by gene expression analysis and the activation levels of AKT and ERK signaling pathways in all three kinds of cells after ASC-MV stimulation. We then assessed the effect of ASC-MVs on collagen deposition, neovascularization, and re-epithelialization in an in vivo skin injury model. ASC-MVs could be readily internalized by human umbilical vein endothelial cells (HUVECs), HaCAT, and fibroblasts and significantly promoted the proliferation, migration, and angiogenesis of these cells both in vitro and in vivo. The gene expression of proliferative markers (cyclin D1, cyclin D2, cyclin A1, cyclin A2) and growth factors (VEGFA, PDGFA, EGF, FGF2) was significantly upregulated after ASC-MV treatment. Importantly, ASC-MVs stimulated the activation of AKT and ERK signaling pathways in those cells. The local injection of ASC-MVs at wound sites significantly increased the re-epithelialization, collagen deposition, and neovascularization and led to accelerated wound closure. Our data suggest that ASC-MVs can stimulate HUVEC, HaCAT, and fibroblast functions. ASC-MV therapy significantly accelerates wound healing, and the benefits of ASC-MVs may due to the involvement of AKT and ERK signaling pathways. This illustrates the therapeutic potential of ASC-MVs which may become a novel treatment paradigm for cutaneous wound healing.

162 citations


Journal ArticleDOI
TL;DR: The findings suggest that ACE2, as a potential resister to breast cancer, might inhibit breast cancer angiogenesis through the VEGFa/VEGFR2/ERK pathway.
Abstract: Breast cancer angiogenesis is key for metastasis and predicts a poor prognosis. Angiotensin-converting enzyme 2 (ACE2), as a member of the renin-angiotensin system (RAS), was reported to restrain the progression of hepatocellular carcinoma (HCC) and non-small cell lung cancer (NSCLC) through inhibiting angiogenesis. However, the relationship between ACE2 and breast cancer angiogenesis remains unclear. The prognosis and relative gene selection were analysed using the GEPIA, GEO, TCGA and STRING databases. ACE2 expression in breast cancer tissue was estimated by reverse transcription-quantitative polymerase chain reaction (qPCR). Breast cancer cell migration, proliferation and angiogenesis were assessed by Transwell migration, proliferation, tube formation, and wound healing assays. The expression of vascular endothelial growth factor A (VEGFa) was detected by qPCR and Western blotting. The phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2), mitogen-activated protein kinase 1/2 (MEK1/2), and extracellular signal-regulated protein kinase 1/2 (ERK1/2) was examined by Western blotting. Breast cancer metastasis and angiogenesis in vivo were measured using a zebrafish model. ACE2 was downregulated in breast cancer patients. Patients with higher ACE2 expression had longer relapse-free survival (RFS). In vitro, ACE2 inhibited breast cancer migration. Meanwhile, ACE2 in breast cancer cells inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, tube formation and migration. In the zebrafish model, ACE2 inhibited breast cancer cell metastasis, as demonstrated by analyses of the number of disseminated foci and the metastatic distance. Neo-angiogenesis was also decreased by ACE2. ACE2 downregulated the expression of VEGFa in breast cancer cells. Furthermore, ACE2 in breast cancer cells inactivated the phosphorylation of VEGFR2, MEK1/2, and ERK1/2 in HUVECs. Our findings suggest that ACE2, as a potential resister to breast cancer, might inhibit breast cancer angiogenesis through the VEGFa/VEGFR2/ERK pathway. Retrospectively registered.

157 citations


Journal ArticleDOI
08 Nov 2019-Cancers
TL;DR: Nrf2’s role in cancer prevention, diagnosis, prognosis, and therapy is still in its infancy, and the future strategic planning of Nrf2-based oncological approaches should also consider the complex interaction between NRF2 and its various activators and inhibitors.
Abstract: Nrf2 is a transcription factor that stimulates the expression of genes which have antioxidant response element-like sequences in their promoter. Nrf2 is a cellular protector, and this principle applies to both normal cells and malignant cells. While healthy cells are protected from DNA damage induced by reactive oxygen species, malignant cells are defended against chemo- or radiotherapy. Through our literature search, we found that Nrf2 activates several oncogenes unrelated to the antioxidant activity, such as Matrix metallopeptidase 9 (MMP-9), B-cell lymphoma 2 (BCL-2), B-cell lymphoma-extra large (BCL-xL), Tumour Necrosis Factor α (TNF-α), and Vascular endothelial growth factor A (VEGF-A). We also did a brief analysis of The Cancer Genome Atlas (TCGA) data of lung adenocarcinoma concerning the effects of radiation therapy and found that the therapy-induced Nrf2 activation is not universal. For instance, in the case of recurrent disease and radiotherapy, we observed that, for the majority of Nrf2-targeted genes, there is no change in expression level. This proves that the universal, axiomatic rationale that Nrf2 is activated as a response to chemo- and radiation therapy is wrong, and that each scenario should be carefully evaluated with the help of Nrf2-targeted genes. Moreover, there were nine genes involved in lipid peroxidation, which showed underexpression in the case of new radiation therapy: ADH1A, ALDH3A1, ALDH3A2, ADH1B, GPX2, ADH1C, ALDH6A1, AKR1C3, and NQO1. This may relate to the fact that, while some studies reported the co-activation of Nrf2 and other oncogenic signaling pathways such as Phosphoinositide 3-kinases (PI3K), mitogen-activated protein kinase (MAPK), and Notch1, other reported the inverse correlation between Nrf2 and the tumor-promoter Transcription Factor (TF), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Lastly, Nrf2 establishes its activity through interactions at multiple levels with various microRNAs. MiR-155, miR-144, miR-28, miR-365-1, miR-93, miR-153, miR-27a, miR-142, miR-29-b1, miR-340, and miR-34a, either through direct repression of Nrf2 messenger RNA (mRNA) in a Kelch-like ECH-associated protein 1 (Keap1)-independent manner or by enhancing the Keap1 cellular level, inhibit the Nrf2 activity. Keap1–Nrf2 interaction leads to the repression of miR-181c, which is involved in the Nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling pathway. Nrf2’s role in cancer prevention, diagnosis, prognosis, and therapy is still in its infancy, and the future strategic planning of Nrf2-based oncological approaches should also consider the complex interaction between Nrf2 and its various activators and inhibitors.

155 citations


Journal ArticleDOI
07 Feb 2019-Cancers
TL;DR: The data convincingly suggest that circSMARCA5 is an upstream regulator of pro- to anti-angiogenic VEGFA isoforms ratio within GBM cells and a highly promising GBM prognostic and prospective anti-Angiogenic molecule.
Abstract: Circular RNAs are a large group of RNAs whose cellular functions are still being investigated. We recently proposed that circSMARCA5 acts as sponge for the splicing factor Serine and Arginine Rich Splicing Factor 1 (SRSF1) in glioblastoma multiforme (GBM). After demonstrating by RNA immunoprecipitation a physical interaction between SRFS1 and circSMARCA5, we assayed by real-time PCR in a cohort of 31 GBM biopsies and 20 unaffected brain parenchyma controls (UC) the expression of total, pro-angiogenic (Iso8a) and anti-angiogenic (Iso8b) mRNA isoforms of Vascular Endothelial Growth Factor A (VEGFA), a known splicing target of SRSF1. The Iso8a to Iso8b ratio: (i) increased in GBM biopsies with respect to UC (p-value < 0.00001); (ii) negatively correlated with the expression of circSMARCA5 (r-value = −0.46, p-value = 0.006); (iii) decreased in U87-MG overexpressing circSMARCA5 with respect to negative control (p-value = 0.0055). Blood vascular microvessel density, estimated within the same biopsies, negatively correlated with the expression of circSMARCA5 (r-value = −0.59, p-value = 0.00001), while positively correlated with that of SRSF1 (r-value = 0.38, p-value = 0.00663) and the Iso8a to Iso8b ratio (r-value = 0.41, p-value = 0.0259). Kaplan-Meier survival analysis showed that GBM patients with low circSMARCA5 expression had lower overall and progression free survival rates than those with higher circSMARCA5 expression (p-values = 0.033, 0.012, respectively). Our data convincingly suggest that circSMARCA5 is an upstream regulator of pro- to anti-angiogenic VEGFA isoforms ratio within GBM cells and a highly promising GBM prognostic and prospective anti-angiogenic molecule.

128 citations


Journal ArticleDOI
TL;DR: It is shown in a phase 1 clinical trial that a modified mRNA encoding VEGF-A is well tolerated in patients with type 2 diabetes and may have therapeutic potential for regenerative angiogenesis.
Abstract: Chemically modified mRNA is an efficient, biocompatible modality for therapeutic protein expression. We report a first-time-in-human study of this modality, aiming to evaluate safety and potential therapeutic effects. Men with type 2 diabetes mellitus (T2DM) received intradermal injections of modified mRNA encoding vascular endothelial growth factor A (VEGF-A) or buffered saline placebo (ethical obligations precluded use of a non-translatable mRNA control) at randomized sites on the forearm. The only causally treatment-related adverse events were mild injection-site reactions. Skin microdialysis revealed elevated VEGF-A protein levels at mRNA-treated sites versus placebo-treated sites from about 4–24 hours post-administration. Enhancements in basal skin blood flow at 4 hours and 7 days post-administration were detected using laser Doppler fluximetry and imaging. Intradermal VEGF-A mRNA was well tolerated and led to local functional VEGF-A protein expression and transient skin blood flow enhancement in men with T2DM. VEGF-A mRNA may have therapeutic potential for regenerative angiogenesis. Chemically modified mRNA is a new approach for therapeutic protein expression that could be applied to angiogenesis. Here the authors show in a phase 1 clinical trial that a modified mRNA encoding VEGF-A is well tolerated in patients with type 2 diabetes.

117 citations


Journal ArticleDOI
TL;DR: The experimentally validated mechanisms by which VEGFA-VEGFR2 inhibitors contribute to nephrotoxicity, as well as the wide range of clinical manifestations that have been reported with their use are reviewed.
Abstract: Inhibition of vascular endothelial growth factor A (VEGFA)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling is a common therapeutic strategy in oncology, with new drugs continuously in development. In this review, we consider the experimental and clinical evidence behind the diverse nephrotoxicities associated with the inhibition of this pathway. We also review the renal effects of VEGF inhibition's mediation of key downstream signaling pathways, specifically MAPK/ERK1/2, endothelial nitric oxide synthase, and mammalian target of rapamycin (mTOR). Direct VEGFA inhibition via antibody binding or VEGF trap (a soluble decoy receptor) is associated with renal-specific thrombotic microangiopathy (TMA). Reports also indicate that tyrosine kinase inhibition of the VEGF receptors is preferentially associated with glomerulopathies such as minimal change disease and FSGS. Inhibition of the downstream pathway RAF/MAPK/ERK has largely been associated with tubulointerstitial injury. Inhibition of mTOR is most commonly associated with albuminuria and podocyte injury, but has also been linked to renal-specific TMA. In all, we review the experimentally validated mechanisms by which VEGFA-VEGFR2 inhibitors contribute to nephrotoxicity, as well as the wide range of clinical manifestations that have been reported with their use. We also highlight potential avenues for future research to elucidate mechanisms for minimizing nephrotoxicity while maintaining therapeutic efficacy.

99 citations


Journal ArticleDOI
TL;DR: In vivo studies showed that anlotinib inhibited tumor growth, induced autophagy and suppressed JAK2/STAT3/VEGFA pathway, and CQEnhanced this effect and induced apoptosis and protective Autophagy in human lung cancer cell lines.
Abstract: The efficacy and safety of multikinase inhibitor anlotinib have been confirmed in the treatment of advanced non-small cell lung cancer (NSCLC). However, the direct functional mechanisms of tumor lethality mediated by anlotinib were not fully elucidated, and the underlying mechanisms related to resistance remain largely elusive. Cell viability, colony formation, apoptosis and tumor growth assays were performed to examine the effect of anlotinib on lung cancer cells in vitro and in vivo. The punctate patterns of LC3-I/II were detected by confocal microscopy. HUVECs motility was detected using Transwell and scratch wound-healing assay. To visualize the microvessels, tubular formation assay was performed. The expression of LC3-I/II and beclin-1 and the changes of JAK2/STAT3/VEGFA pathway were detected by western blotting. The VEGFA levels in tumor supernatant were measured by ELISA. Anlotinib treatment decreased cell viability and induced apoptosis in Calu-1 and A549 cells. Moreover, anlotinib induced human lung cancer cell autophagy in a dose- and time-dependent manner. Blocking autophagy enhanced the cytotoxicity and anti-angiogenic ability of anlotinib as evidenced by HUVECs migration, invasion, and tubular formation assay. Co-administration of anlotinib and chloroquine (CQ) further reduced VEGFA level in the tumor supernatant, compared with that of anlotinib or CQ treatment alone. When autophagy was induced by rapamycin, the JAK2/STAT3 pathway was activated and VEGFA was elevated, which was attenuated after deactivating STAT3 by S3I-201. Further in vivo studies showed that anlotinib inhibited tumor growth, induced autophagy and suppressed JAK2/STAT3/VEGFA pathway, and CQ enhanced this effect. Anlotinib induced apoptosis and protective autophagy in human lung cancer cell lines. Autophagy inhibition further enhanced the cytotoxic effects of anlotinib, and potentiated the anti-angiogenic property of anlotinib through JAK2/STAT3/VEGFA signaling.

83 citations


Journal ArticleDOI
01 Feb 2019-Glia
TL;DR: Investigating the mechanisms of the outer BRB disruption regarding the interaction between RPE and microglia found it amplified the recruitment of microglial cells and IL‐6‐treated microglials produced TNF‐α to disrupt the outerBRB in diabetic retinopathy.
Abstract: Inner and outer blood-retinal barriers (BRBs), mainly composed of retinal endothelial cells and retinal pigment epithelial (RPE) cells, respectively, maintain the integrity of the retinal tissues. In this study, we aimed to investigate the mechanisms of the outer BRB disruption regarding the interaction between RPE and microglia. In mice with high-fat diet-induced obesity and streptozotocin-induced hyperglycemia, microglia accumulated on the RPE layer, as in those after intravitreal injection of interleukin (IL)-6, which is elevated in ocular fluids of patients with diabetic retinopathy. Although IL-6 did not directly affect the levels of zonula occludens (ZO)-1 and occludin in RPE cells, IL-6 increased VEGFA mRNA in RPE cells to recruit microglial cells. In microglial cells, IL-6 upregulated the mRNA levels of MCP1, MIP1A, and MIP1B, to amplify the recruitment of microglial cells. In this manner, IL-6 modulated RPE and microglial cells to attract microglial cells on RPE cells. Furthermore, IL-6-treated microglial cells produced and secreted tumor necrosis factor (TNF)-α, which activated NF-κB and decreased the levels of ZO-1 in RPE cells. As STAT3 inhibition reversed the effects of IL-6-treated microglial cells on the RPE monolayer in vitro, it reduced the recruitment of microglial cells and the production of TNF-α in RPE tissues in streptozotocin-treated mice. Taken together, IL-6-treated RPE and microglial cells amplified the recruitment of microglial cells and IL-6-treated microglial cells produced TNF-α to disrupt the outer BRB in diabetic retinopathy.

77 citations


Journal ArticleDOI
TL;DR: The study has identified a regulator of angiogenesis and provides a map of hypoxia-induced molecular alterations in mammary CAFs and a new potential target for anti-angiogenic therapy.
Abstract: Intratumoral hypoxia causes the formation of dysfunctional blood vessels, which contribute to tumor metastasis and reduce the efficacy of therapeutic treatments. Blood vessels are embedded in the tumor stroma of which cancer-associated fibroblasts (CAFs) constitute a prominent cellular component. We found that hypoxic human mammary CAFs promoted angiogenesis in CAF-endothelial cell cocultures in vitro. Mass spectrometry–based proteomic analysis of the CAF secretome unraveled that hypoxic CAFs contributed to blood vessel abnormalities by altering their secretion of various pro- and anti-angiogenic factors. Hypoxia induced pronounced remodeling of the CAF proteome, including proteins that have not been previously related to this process. Among those, the uncharacterized protein NCBP2-AS2 that we renamed HIAR (hypoxia-induced angiogenesis regulator) was the protein most increased in abundance in hypoxic CAFs. Silencing of HIAR abrogated the pro-angiogenic and pro-migratory function of hypoxic CAFs by decreasing secretion of the pro-angiogenic factor VEGFA and consequently reducing VEGF/VEGFR downstream signaling in the endothelial cells. Our study has identified a regulator of angiogenesis and provides a map of hypoxia-induced molecular alterations in mammary CAFs.

74 citations


Journal ArticleDOI
TL;DR: In this article, the authors showed that circ-CSPP1 is highly expressed in ovarian cancer (OC) tissues, and they also found that miR-1236-3p is a target of circ-SPP 1.

65 citations


Journal ArticleDOI
TL;DR: Mechanistic investigation indicated that vascular endothelial growth factor A (VEGF‐A, VEGF) plays a crucial role during DANCR inhibition of tumor angiogenesis in ovarian cancer, and results demonstrated that miR‐145 is the direct binding target of DAN CR during regulation of V EGF expression and tumor ang iogenesis in Ovarian cancer cells.
Abstract: Differentiation antagonizing non-protein coding RNA (DANCR) is a newly identified oncogenic long noncoding RNA found in various cancers. However, the functional role of DANCR in tumor angiogenesis and the underlying mechanisms are still unclear. The expression of DANCR was determined in ovarian malignant tissues and cell lines. The functional role of DANCR in tumor angiogenesis was revealed by the following methods: CD31 staining of ovarian tumor tissues, matrigel-plug assay tissues, HUVEC-related tube formation assay, and invasion assay. Enzyme-linked immunosorbent assay, Western blotting, luciferase assay, and rescue experiments were used to investigate the underlying mechanisms of DANCR-regulating angiogenesis. DANCR was upregulated in ovarian malignant tissues and ovarian cancer cells. Knockdown of DANCR efficiently impaired ovarian tumor growth through inhibition of tumor angiogenesis. Furthermore, the conditional culture medium from DANCR-knockdown ovarian cells significantly inhibited tube formation and invasion of HUVEC in vitro. Mechanistic investigation indicated that vascular endothelial growth factor A (VEGF-A, VEGF) plays a crucial role during DANCR inhibition of tumor angiogenesis in ovarian cancer. Further results demonstrated that miR-145 is the direct binding target of DANCR during regulation of VEGF expression and tumor angiogenesis in ovarian cancer cells. Collectively, DANCR plays a promotional role in tumor angiogenesis in ovarian cancer through regulation of miR-145/VEGF axis. Therefore, DANCR may be a novel therapy target for ovarian cancer.

Journal ArticleDOI
Yu-Rui Duan1, Baoping Chen1, Fang Chen1, Suxia Yang1, Chao-Yang Zhu1, Yali Ma1, Yang Li1, Jun Shi1 
TL;DR: It is revealed that overexpressed miR-16-5p in hUSC exosomes could protect HPDCs induced by HG and suppress VEGFA expression and podocytic apoptosis, providing fresh insights for novel treatment of DN.
Abstract: Diabetic nephropathy (DN) remains one of the severe complications associated with diabetes mellitus. It is worthwhile to uncover the underlying mechanisms of clinical benefits of human urine-derived stem cells (hUSCs) in the treatment of DN. At present, the clinical benefits associated with hUSCs in the treatment of DN remains unclear. Hence, our study aims to investigate protective effect of hUSC exosome along with microRNA-16-5p (miR-16-5p) on podocytes in DN via vascular endothelial growth factor A (VEGFA). Initially, miR-16-5p was predicated to target VEGFA based on data retrieved from several bioinformatics databases. Notably, dual-luciferase report gene assay provided further verification confirming the prediction. Moreover, our results demonstrated that high glucose (HG) stimulation could inhibit miR-16-5p and promote VEGFA in human podocytes (HPDCs). miR-16-5p in hUSCs was transferred through the exosome pathway to HG-treated HPDCs. The viability and apoptosis rate of podocytes after HG treatment together with expression of the related factors were subsequently determined. The results indicated that miR-16-5p secreted by hUSCs could improve podocyte injury induced by HG. In addition, VEGA silencing could also ameliorate HG-induced podocyte injury. Finally, hUSC exosomes containing overexpressed miR-16-5p were injected into diabetic rats via tail vein, followed by qualification of miR-16-5p and observation on the changes of podocytes, which revealed that overexpressed miR-16-5p in hUSCs conferred protective effects on HPDCs in diabetic rats. Taken together, the present study revealed that overexpressed miR-16-5p in hUSC exosomes could protect HPDCs induced by HG and suppress VEGFA expression and podocytic apoptosis, providing fresh insights for novel treatment of DN.

Journal ArticleDOI
TL;DR: It is shown that transmembrane protein 33 (tmem33), which has no known function in multicellular organisms, is essential to mediate effects of VEGF in both zebrafish and human ECs, and a hitherto unsuspected role for tmem33 and calcium oscillations in the regulation of vascular development is revealed.
Abstract: Angiogenesis requires co-ordination of multiple signalling inputs to regulate the behaviour of endothelial cells (ECs) as they form vascular networks. Vascular endothelial growth factor (VEGF) is essential for angiogenesis and induces downstream signalling pathways including increased cytosolic calcium levels. Here we show that transmembrane protein 33 (tmem33), which has no known function in multicellular organisms, is essential to mediate effects of VEGF in both zebrafish and human ECs. We find that tmem33 localises to the endoplasmic reticulum in zebrafish ECs and is required for cytosolic calcium oscillations in response to Vegfa. tmem33-mediated endothelial calcium oscillations are critical for formation of endothelial tip cell filopodia and EC migration. Global or endothelial-cell-specific knockdown of tmem33 impairs multiple downstream effects of VEGF including ERK phosphorylation, Notch signalling and embryonic vascular development. These studies reveal a hitherto unsuspected role for tmem33 and calcium oscillations in the regulation of vascular development.

Journal ArticleDOI
01 Mar 2019-Oncogene
TL;DR: Bclaf1 is identified as a novel positive regulator of HIF-1α in the hypoxic microenvironment, providing new incentives for promoting Bcalf1 as a potential therapeutic target for an anti-HCC strategy.
Abstract: The development of hepatocellular carcinomas (HCC) depends on their local microenvironment and the induction of neovascularization is a decisive step in tumor progression, since the growth of solid tumors is limited by nutrient and oxygen supply. Hypoxia is the critical factor that induces transcription of the hypoxia inducible factor-1α (HIF-1α) encoding gene HIF1A and HIF-1α protein accumulation to promote angiogenesis. However, the basis for the transcriptional regulation of HIF1A expression in HCC is still unclear. Here, we show that Bclaf1 levels are highly correlated with HIF-1α levels in HCC tissues, and that knockdown of Bclaf1 in HCC cell lines significantly reduces hypoxia-induced HIF1A expression. Furthermore, we found that Bclaf1 promotes HIF1A transcription via its bZIP domain, leading subsequently to increased transcription of the HIF-1α downstream targets VEGFA, TGFB, and EPO that in turn promote HCC-associated angiogenesis and thus survival and thriving of HCC cells. Moreover, we demonstrate that HIF-1α levels and microvessel density decrease after the shRNA-mediated Bclaf1 knockdown in xenograft tumors. Finally, we found that Bclaf1 levels increase in hypoxia in a HIF-1α dependent manner. Therefore, our study identifies Bclaf1 as a novel positive regulator of HIF-1α in the hypoxic microenvironment, providing new incentives for promoting Bcalf1 as a potential therapeutic target for an anti-HCC strategy.

Journal ArticleDOI
TL;DR: The study indicated that P53-induced miR-1249 may suppress CRC growth, metastasis and angiogenesis by targeting VEGFA and HMGA2, as well as regulate Akt/mTOR pathway and EMT process in the initiation and development of CRC.
Abstract: MicroRNAs (miRNAs) are important class of functional regulators involved in human cancers development, including colorectal cancer (CRC). Exploring aberrantly expressed miRNAs may provide us with new insights into the initiation and development of CRC by functioning as oncogenes or tumor suppressors. The aim of our study is to discover the expression pattern of miR-1249 in CRC and investigate its clinical significance as well as biological role in CRC progression. In our study, we found that miR-1249 was markedly downregulated in CRC tissues and cell lines, and negatively related to pN stage, pM stage, TNM stage, and overall survival (OS). Moreover, we demonstrated that miR-1249 was a direct transcriptional target of P53 and revealed that P53-induced miR-1249 inhibited tumor growth, metastasis and angiogenesis in vitro and vivo. Additionally, we verified that miR-1249 suppressed CRC proliferation and angiogenesis by targeting VEGFA as well as inhibited CRC metastasis by targeting both VEGFA and HMGA2. Further studying showed that miR-1249 suppressed CRC cell proliferation, migration, invasion, and angiogenesis via VEGFA-mediated Akt/mTOR pathway as well as inhibited EMT process of CRC cells by targeting both VEGFA and HMGA2. Our study indicated that P53-induced miR-1249 may suppress CRC growth, metastasis and angiogenesis by targeting VEGFA and HMGA2, as well as regulate Akt/mTOR pathway and EMT process in the initiation and development of CRC. miR-1249 might be a novel the therapeutic candidate target in CRC treatment.

Journal ArticleDOI
TL;DR: It is demonstrated that cold atmospheric plasma treatment was associated with enhanced angiogenesis, characterised by accelerated in vivo wound healing and increased cellular proliferation, and may guide future efforts aimed at addressing the use of physical plasma and its therapeutic applications in a variety of pathological scenarios.
Abstract: Treatment with cold atmospheric plasma (CAP) has been reported to promote wound healing in animals. However, how this process is mediated remains unclear. In this study we examined the mechanisms which underlie the improved wound healing effects of CAP and the roles of associated reactive oxygen and nitrogen species (RONS), which are generated by plasma. By using in vitro models which mimicked various steps of angiogenesis, we demonstrated that CAP triggered the production of nitric oxide (NO), and enhanced cell migration and the assembly of endothelial cells into vessel-like structures. These are both hallmarks of the proliferative phase of wound healing. Using a mouse model of a third-degree burn wound, we went on to show that CAP treatment was associated with enhanced angiogenesis, characterised by accelerated in vivo wound healing and increased cellular proliferation. Here, CAP significantly increased the in vivo production of endothelial NO synthase (eNOS), an enzyme that catalyses NO synthesis in endothelial cells, and significantly increased the expression of pro-angiogenic PDGFRβ and CD31 markers in mouse wounds. Mechanistically, we showed that CAP induced eNOS phosphorylation and activation, thereby increasing the levels of endogenous NO in endothelial cells. Increased NO generation facilitated by CAP further stimulated important pro-angiogenic VEGFA/VEGFR2 signalling in vitro. This proof-of-concept study may guide future efforts aimed at addressing the use of physical plasma and its therapeutic applications in a variety of pathological scenarios. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The findings provide insight into the important role of SIRT2 in colon tumour angiogenesis and suggest that Sirt2/STAT3/VEGFA might be a novel prognostic biomarker and a potential therapeutic target for patients with colorectal cancer.
Abstract: Mounting evidence has demonstrated that angiogenesis plays an important role in tumour progression. However, the key regulators in tumour angiogenesis remain unclear. Recently, emerging reports have indicated that SIRT2 plays critical roles in proliferation, metastasis and tumourigenesis in diverse tumours. However, the function of SIRT2 in tumour angiogenesis and the mechanism underlying the regulation of angiogenesis by SIRT2 are still unknown. Here, we found that SIRT2 was upregulated in colorectal cancer tissues compared to that in normal samples and that the elevated SIRT2 was associated with poor prognosis in patients with colorectal cancer. In addition, a series of in vitro and in vivo experiments were performed to demonstrate the role of SIRT2 in tumour angiogenesis. We showed that silencing SIRT2 significantly suppressed tumour angiogenesis. Mechanistically, the knockdown of SIRT2 inhibited STAT3 phosphorylation, causing decreased secretion of VEGFA. Notably, we found that SIRT2 directly interacted with STAT3 and affected the phosphorylation of STAT3 and the translocation of phosphorylated STAT3 to the nucleus. Importantly, a series of rescue experiments suggested that the function of SIRT2 in tumour angiogenesis depends on the STAT3/VEGFA signalling pathway. Our findings provide insight into the important role of SIRT2 in colon tumour angiogenesis and suggest that SIRT2/STAT3/VEGFA might be a novel prognostic biomarker and a potential therapeutic target for patients with colorectal cancer.

Journal ArticleDOI
TL;DR: A model in which pericytes distribution and coverage are indirectly affected by endothelial cell VEGF-A signaling and the downstream regulation of PDGF-B-PDGFRβ dynamics, without substantial involvement of pericyte Notch signaling during these early stages is supported.
Abstract: Pericyte investment into new blood vessels is essential for vascular development such that mis-regulation within this phase of vessel formation can contribute to numerous pathologies including arteriovenous and cerebrovascular malformations. It is critical therefore to illuminate how angiogenic signaling pathways intersect to regulate pericyte migration and investment. Here, we disrupted vascular endothelial growth factor-A (VEGF-A) signaling in ex vivo and in vitro models of sprouting angiogenesis, and found pericyte coverage to be compromised during VEGF-A perturbations. Pericytes had little to no expression of VEGF receptors, suggesting VEGF-A signaling defects affect endothelial cells directly but pericytes indirectly. Live imaging of ex vivo angiogenesis in mouse embryonic skin revealed limited pericyte migration during exposure to exogenous VEGF-A. During VEGF-A gain-of-function conditions, pericytes and endothelial cells displayed abnormal transcriptional changes within the platelet-derived growth factor-B (PDGF-B) and Notch pathways. To further test potential crosstalk between these pathways in pericytes, we stimulated embryonic pericytes with Notch ligands Delta-like 4 (Dll4) and Jagged-1 (Jag1) and found induction of Notch pathway activity but no changes in PDGF Receptor-β (Pdgfrβ) expression. In contrast, PDGFRβ protein levels decreased with mis-regulated VEGF-A activity, observed in the effects on full-length PDGFRβ and a truncated PDGFRβ isoform generated by proteolytic cleavage or potentially by mRNA splicing. Overall, these observations support a model in which, during the initial stages of vascular development, pericyte distribution and coverage are indirectly affected by endothelial cell VEGF-A signaling and the downstream regulation of PDGF-B-PDGFRβ dynamics, without substantial involvement of pericyte Notch signaling during these early stages.

Journal ArticleDOI
TL;DR: Novel treatment options for VEGF inhibitor-induced toxicity are provided, including salt restriction, ET receptor blockade, and cyclo-oxygenase inhibition, in addition to classical antihypertensive and renoprotective drugs.
Abstract: Since the formation of new blood vessels is essential for tumour growth and metastatic spread, inhibition of angiogenesis by targeting the vascular endothelial growth factor (VEGF) pathway is an effective strategy for various types of cancer, most importantly renal cell carcinoma, thyroid cancer, and hepatocellular carcinoma. However, VEGF inhibitors have serious side effects, most importantly hypertension and nephropathy. In case of fulminant hypertension, this may only be handled by lowering the dosage since the blood pressure rise is proportional to the amount of VEGF inhibition. These effects pathophysiologically and clinically resemble the most severe complication of pregnancy, preeclampsia, in which case an insufficient placenta leads to a rise in sFlt-1 levels causing a decrease in VEGF availability. Due to this overlap, studies in preeclampsia may provide important information for VEGF inhibitor-induced toxicity and vice versa. In both VEGF inhibitor-induced toxicity and preeclampsia, endothelin (ET)-1 appears to be a pivotal player. In this review, after briefly summarizing the anticancer effects, we discuss the mechanisms that potentially underlie the unwanted effects of VEGF inhibitors, focusing on ET-1, nitric oxide and oxidative stress, the renin-angiotensin-aldosterone system, and rarefaction. Given the salt sensitivity of this phenomenon, as well as the beneficial effects of aspirin in preeclampsia and cancer, we next provide novel treatment options for VEGF inhibitor-induced toxicity, including salt restriction, ET receptor blockade, and cyclo-oxygenase inhibition, in addition to classical antihypertensive and renoprotective drugs. We conclude with the recommendation of therapeutic drug monitoring to improve patient outcome.

Journal ArticleDOI
TL;DR: The ANGPTL4/NRP/RhoA pathway is identified as a therapeutic target for the treatment of DME and expression of angiopoietin-like 4, a HIF-1-regulated gene product, is increased in the eyes of diabetic mice and patients with DME.
Abstract: The majority of patients with diabetic macular edema (DME), the most common cause of vision loss in working-age Americans, do not respond adequately to current therapies targeting VEGFA. Here, we show that expression of angiopoietin-like 4 (ANGPTL4), a HIF-1-regulated gene product, is increased in the eyes of diabetic mice and patients with DME. We observed that ANGPTL4 and VEGF act synergistically to destabilize the retinal vascular barrier. Interestingly, while ANGPTL4 modestly enhanced tyrosine phosphorylation of VEGF receptor 2, promotion of vascular permeability by ANGPTL4 was independent of this receptor. Instead, we found that ANGPTL4 binds directly to neuropilin 1 (NRP1) and NRP2 on endothelial cells (ECs), leading to rapid activation of the RhoA/ROCK signaling pathway and breakdown of EC-EC junctions. Treatment with a soluble fragment of NRP1 (sNRP1) prevented ANGPTL4 from binding to NRP1 and blocked ANGPTL4-induced activation of RhoA as well as EC permeability in vitro and retinal vascular leakage in diabetic animals in vivo. In addition, sNRP1 reduced the stimulation of EC permeability by aqueous fluid from patients with DME. Collectively, these data identify the ANGPTL4/NRP/RhoA pathway as a therapeutic target for the treatment of DME.

Journal ArticleDOI
TL;DR: The findings in this research illustrate that circSCAF11 accelerates glioma tumorigenesis through the miR-421/SP1/VEGFA axis, providing a potential target for circRNA and gliomas treatment.
Abstract: Circular RNAs (circRNAs) are a novel category of non-coding RNAs, and they have been identified to participate in glioma tumorigenesis. Here we investigated the functions of circRNA circSCAF11 in glioma genesis, and we unveiled its molecular mechanism in the pathophysiological process. Expression levels of circSCAF11, miR-421, and SP1 mRNA were measured using RT-PCR. Proteins were measured using western blotting. The tumor phenotypes of glioma cells were detected using flow cytometry and Cell Counting Kit-8 (CCK-8), transwell, and xenograft mouse assays. The combination within circSCAF11, miR-421, and SP1 was validated using luciferase reporter assay or RNA pull-down assay. The binding of transcription factor SP1 with vascular endothelial cell growth factor A (VEGFA) promoter was inspected using chromatin immunoprecipitation (ChIP). circSCAF11 expression was found to be significantly upregulated in the glioma tissue specimens and cell lines. The ectopic overexpression of circSCAF11 was closely correlated with the poor clinical outcome of glioma patients. Functionally, knockdown of circSCAF11 inhibited the proliferation, invasion, and tumor growth and induced the G0/G1 phase arrest. Mechanically, circSCAF11 positively regulated the SP1 expression through sponging miR-421. Moreover, transcription factor SP1 activated the transcription of VEGFA, constructing the circSCAF11/miR-421/SP1/VEGFA axis in the glioma genesis. The findings in this research illustrate that circSCAF11 accelerates glioma tumorigenesis through the miR-421/SP1/VEGFA axis, providing a potential target for circRNA and glioma treatment.

Journal ArticleDOI
04 Jul 2019-Cancers
TL;DR: The roles of cyclo-oxygenase (COX)-2 induced miR526b and miR655 in tumour-associated angiogenesis and lymphangiogenesis are examined and EP4 is considered as a potential therapeutic target to abrogate miRNA-induced angiogenic and lymphangaogenesis in breast cancer.
Abstract: MicroRNAs (miRNAs) are small endogenously produced RNAs, which regulate growth and development, and oncogenic miRNA regulate tumor growth and metastasis. Tumour-associated angiogenesis and lymphangiogenesis are processes involving the release of growth factors from tumour cells into the microenvioronemnt to communicate with endothelial cells to induce vascular propagation. Here, we examined the roles of cyclo-oxygenase (COX)-2 induced miR526b and miR655 in tumour-associated angiogenesis and lymphangiogenesis. Ectopic overexpression of miR526b and miR655 in poorly metastatic estrogen receptor (ER) positive MCF7 breast cancer cells resulted in upregulation of angiogenesis and lymphangiogenesis markers vascular endothelial growth factor A (VEGFA); VEGFC; VEGFD; COX-2; lymphatic vessel endothelial hyaluronan receptor-1 (LYVE1); and receptors VEGFR1, VEGFR2, and EP4. Further, miRNA-high cell free conditioned media promoted migration and tube formation by human umbilical vein endothelial cells (HUVECs), and upregulated VEGFR1, VEGFR2, and EP4 expression, showing paracrine stimulation of miRNA in the tumor microenvironment. The miRNA-induced migration and tube formation phenotypes were abrogated with EP4 antagonist or PI3K/Akt inhibitor treatments, confirming the involvement of the EP4 and PI3K/Akt pathway. Tumour supressor gene PTEN was found to be downregulated in miRNA high cells, confirming that it is a target of both miRNAs. PTEN inhibits hypoxia-inducible factor-1 (HIF1α) and the PI3K/Akt pathway, and loss of regulation of these pathways through PTEN results in upregulation of VEGF expression. Moreover, in breast tumors, angiogenesis marker VEGFA and lymphangiogenesis marker VEGFD expression was found to be significantly higher compared with non-adjacent control, and expression of miR526b and miR655 was positively correlated with VEGFA, VEGFC, VEGFD, CD31, and LYVE1 expression in breast tumour samples. These findings further strengthen the role of miRNAs as breast cancer biomarkers and EP4 as a potential therapeutic target to abrogate miRNA-induced angiogenesis and lymphangiogenesis in breast cancer.

Journal ArticleDOI
TL;DR: HMGA1 and FOXM1 synergistically drive breast cancer cells to promote tumor angiogenesis both in vitro in endothelial cells and in vivo in a zebrafish xenograft model and it is demonstrated that the possibility to target HMGA1/FOXM1 in combination should represent an attractive therapeutic option to counteract breast cancerAngiogenesis.
Abstract: Breast cancer is the most common malignancy in women worldwide. Among the breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive and the most difficult to treat. One of the master regulators in TNBC progression is the architectural transcription factor HMGA1. This study aimed to further explore the HMGA1 molecular network to identify molecular mechanisms involved in TNBC progression. RNA from the MDA-MB-231 cell line, silenced for HMGA1 expression, was sequenced and, with a bioinformatic analysis, molecular partners HMGA1 could cooperate with in regulating common downstream gene networks were identified. Among the putative partners, the FOXM1 transcription factor was selected. The relationship occurring between HMGA1 and FOXM1 was explored by qRT-PCR, co-immunoprecipitation and protein stability assays. Subsequently, the transcriptional activity of HMGA1 and FOXM1 was analysed by luciferase assay on the VEGFA promoter. The impact on angiogenesis was assessed in vitro, evaluating the tube formation ability of endothelial cells exposed to the conditioned medium of MDA-MB-231 cells silenced for HMGA1 and FOXM1 and in vivo injecting MDA-MB-231 cells, silenced for the two factors, in zebrafish larvae. Here, we discover FOXM1 as a novel molecular partner of HMGA1 in regulating a gene network implicated in several breast cancer hallmarks. HMGA1 forms a complex with FOXM1 and stabilizes it in the nucleus, increasing its transcriptional activity on common target genes, among them, VEGFA, the main inducer of angiogenesis. Furthermore, we demonstrate that HMGA1 and FOXM1 synergistically drive breast cancer cells to promote tumor angiogenesis both in vitro in endothelial cells and in vivo in a zebrafish xenograft model. Moreover, using a dataset of breast cancer patients we show that the co-expression of HMGA1, FOXM1 and VEGFA is a negative prognostic factor of distant metastasis-free survival and relapse-free survival. This study reveals FOXM1 as a crucial interactor of HMGA1 and proves that their cooperative action supports breast cancer aggressiveness, by promoting tumor angiogenesis. Therefore, the possibility to target HMGA1/FOXM1 in combination should represent an attractive therapeutic option to counteract breast cancer angiogenesis.

Journal ArticleDOI
TL;DR: It is suggested that Res-GNPs possess significantly better anti-cancer effect than Res alone in vitro and in vivo, which may be helpful for the clinical therapy of liver cancer.
Abstract: Nanomaterials-based drug delivery systems display potent applications in cancer therapy. We synthesized a novel anticancer drug, nano-gold loaded with resveratrol (Res-GNPs), which were characterized using UV-Prove, zetasizer and transmission electron microscope. MTT assay, flow cytometry, TUNEL, immunohistochemistry and western blot analysis were performed to explore the antitumor activity of Res-GNPs in liver cancer cells and tumor xenografts. Res-GNPs showed a stronger effect on inhibiting cell proliferation and promoting apoptosis in Hepg2 cells than that of free Res. Res-GNPs induced apoptosis in Hepg2 cells by down-regulating pro-caspase-9, pro-caspase-3, PI3K and Akt and upregulating caspase-8 and bax. In xenograft studies, Res-GNPs remarkably suppressed tumor growth, promoted tumor apoptosis and decreased the expression of vascular endothelial growth factor (VEGF) in tumor tissue. Furthermore, HE staining showed that no observable toxicity was found in heart, liver, kidney and spleen. The datum confirmed that Res-GNPs possess better antitumor effect than Res in vitro and in vivo, which may be due to gold nanoparticles carry more resveratrol into cells and locate in mitochondria. These results suggested that Res-GNPs possess significantly better anti-cancer effect than Res alone in vitro and in vivo, which may be helpful for the clinical therapy of liver cancer.

Journal ArticleDOI
TL;DR: It is reported that microvascular structural entropy (MSE) may be a prognostic factor in several tumor types and have potential as a biomarker in the clinic and demonstrated the importance of vascular normalization in tumor therapy.
Abstract: Anti-angiogenic therapies demonstrate anti-tumor effects by decreasing blood supply to tumors and inhibiting tumor growth. However, anti-angiogenic therapy may leads to changes in tumor microenvironment and increased invasiveness of tumor cells, which in turn promotes distant metastasis and increased drug resistance. The CO-IP assays, N-STORM and cytoskeleton analysis were used to confirm the mechanism that p-VEGFR2/VE-cadherin/β-catenin/actin complex regulates vascular remodeling and improves the tumor microenvironment. 6-gingerol (6G), the major bioactive component in ginger, stabilized this complex by enhancing the binding of VEGFa to VEGFR2 with non-pathway dependent. Biacore, pull down and molecular docking were employed to confirm the interaction between 6G and VEGFR2 and enhancement of VEGFa binding to VEGFR2. Here, we report that microvascular structural entropy (MSE) may be a prognostic factor in several tumor types and have potential as a biomarker in the clinic. 6G regulates the structural organization of the microvascular bed to decrease MSE via the p-VEGFR2/VE-cadherin/β-catenin/actin complex and inhibit tumor progression. 6G promotes the normalization of tumor vessels, improves the tumor microenvironment and decreases MSE, facilitating the delivery of chemotherapeutic agents into the tumor core and thereby reducing tumor growth and metastasis. This study demonstrated the importance of vascular normalization in tumor therapy and elucidated the mechanism of action of ginger, a medicinal compound that has been used in China since ancient times.

Journal ArticleDOI
TL;DR: Hypoxia contributes to vascular calcification through the induction of osteochondrogenic differentiation of VSMCs in an HIF-1-dependent and mitochondria-derived reactive oxygen species-dependent manner.
Abstract: Objective- Vascular calcification is associated with high risk of cardiovascular events and mortality. Osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) is the major cellular mechanism underlying vascular calcification. Because tissue hypoxia is a common denominator in vascular calcification, we investigated whether hypoxia per se triggers osteochondrogenic differentiation of VSMCs. Approach and Results- We studied osteochondrogenic differentiation of human aorta VSMCs cultured under normoxic (21% O2) and hypoxic (5% O2) conditions. Hypoxia increased protein expression of HIF (hypoxia-inducible factor)-1α and its target genes GLUT1 (glucose transporter 1) and VEGFA (vascular endothelial growth factor A) and induced mRNA and protein expressions of osteochondrogenic markers, that is, RUNX2 (runt-related transcription factor 2), SOX9 (Sry-related HMG box-9), OCN (osteocalcin) and ALP (alkaline phosphatase), and induced a time-dependent calcification of the extracellular matrix of VSMCs. HIF-1 inhibition by chetomin abrogated the effect of hypoxia on osteochondrogenic markers and abolished extracellular matrix calcification. Hypoxia triggered the production of reactive oxygen species, which was inhibited by chetomin. Scavenging reactive oxygen species by N-acetyl cysteine attenuated hypoxia-mediated upregulation of HIF-1α, RUNX2, and OCN protein expressions and inhibited extracellular matrix calcification, which effect was mimicked by a specific hydrogen peroxide scavenger sodium pyruvate and a mitochondrial reactive oxygen species inhibitor rotenone. Ex vivo culture of mice aorta under hypoxic conditions triggered calcification which was inhibited by chetomin and N-acetyl cysteine. In vivo hypoxia exposure (10% O2) increased RUNX2 mRNA levels in mice lung and the aorta. Conclusions- Hypoxia contributes to vascular calcification through the induction of osteochondrogenic differentiation of VSMCs in an HIF-1-dependent and mitochondria-derived reactive oxygen species-dependent manner.

Journal ArticleDOI
TL;DR: This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment.
Abstract: Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.

Journal ArticleDOI
TL;DR: Expressions of circ0001429 and VEGFA were up-regulated, whereas miR-205-5p expression was down-regulated in bladder cancer tissues in comparison with paired adjacent normal bladder tissues, revealing the inhibitor role of sh-circ0001429 in tumor growth and lung metastasis.
Abstract: Objective This study investigates expressions of circ0001429, miR-205-5p and vascular endothelial growth factor (VEGFA) in bladder cancer tissues and their effects on the proliferation, migration and apoptosis. Methods Arraystar Human CircRNA chip was applied to analyzing the differential expression of circRNA in four bladder cancer tissues and paired adjacent normal bladder tissues. Real time quantitative PCR was utilized to detect the expression of circ0001429 in tissue specimens. Bioinformatics, RNA immunoprecipitation and luciferase reporter assays were used to verify the relationship among circ0001429, miR-205-5p and VEGFA in bladder cancer. Cell propagation was determined by CCK8 assay and roles of circ0001429 and miR-205-5p in cell migration were verified with transwell migration assay. Flow cytometry and TUNEL staining were conducted to observe the impact on cell apoptosis ability. Xenograft experiment was also performed to validate the influence of circ0001429 on tumor growth in vivo. Results Expressions of circ0001429 and VEGFA were up-regulated, whereas miR-205-5p expression was down-regulated in bladder cancer tissues in comparison with paired adjacent normal bladder tissues. Circ0001429 enhanced the propagation and metastasis abilities of T24 cells and 5637 cells in vitro, but reduced cell apoptosis. In vivo experiments revealed the inhibitor role of sh-circ0001429 in tumor growth and lung metastasis. Circ0001429 sponged miR-205-5p that targeted VEGFA, thereby modulating the protein level of VEGFA. Meanwhile, miR-205-5p restrained the cell viability and mobility and promoted the apoptosis in bladder cancer. Circ0001429 could accelerate cell propagation, migration and invasiveness through increasing VEGFA expression via miR-205-5p. Conclusion Circ0001429 and VEGFA were highly expressed in bladder cancer, while miR-205-5p were lowly expressed in bladder cancer. The circ0001429 could target at miR-205-5p to regulate VEGFA and promote the development of bladder cancer.

Journal ArticleDOI
TL;DR: VA attenuated OA progression in vivo and vitro and suppressed the IL-1β induced activation of MAPK and PI3K/AKT/NF-κB pathways, demonstrating that VA could potentially be a new candidate for OA therapy.

Journal ArticleDOI
TL;DR: EVs released from apoptotic MMCs following treatment with bortezomib can promote angiogenesis suppression by decreasing proliferation and migration of EC and are mediated by specific signal transduction pathways.
Abstract: Bone marrow microenvironment is known to support angiogenesis, thus contributing to progression of multiple myeloma (MM). Bortezomib, a proteasome inhibitor (PI) widely used in MM treatment, has anti-angiogenic activity. Extracellular vesicles (EVs), shedding from cell surface, serve as mediators in cell-to-cell communication. We have hypothesized that MM cells (MMCs) treated with bortezomib generate EVs that could diminish angiogenesis, thus limiting MM progression. In the present study, EVs were obtained from MMCs (RPMI-8226), untreated (naive) or pre-treated with bortezomib. EVs were outlined using NanoSight, FACS, protein arrays and proteasome activity assays. The impact of MMC-EVs on endothelial cell (EC) functions was assessed, employing XTT assay, Boyden chamber and Western blot. A high apoptosis level (annexin V binding 70.25 ± 16.37%) was observed in MMCs following exposure to bortezomib. Compared to naive EVs, a large proportion of bortezomib-induced EVs (Bi-EVs) were bigger in size (> 300 nm), with higher levels of annexin V binding (p = 0.0043).They also differed in content, presenting with increased levels of pro-inflammatory proteins, reduced levels of pro-angiogenic growth factors (VEGFA, PDGF-BB, angiogenin), and displayed lower proteasome activity. Naive EVs were found to promote EC migration and proliferation via ERK1/2 and JNK1/2/3 phosphorylation, whereas Bi-EVs inhibited these functions. Moreover, Bi-EVs appeared to reduce EC proteasome activity. EVs released from apoptotic MMCs following treatment with bortezomib can promote angiogenesis suppression by decreasing proliferation and migration of EC. These activities are found to be mediated by specific signal transduction pathways.