scispace - formally typeset
Search or ask a question
Topic

Vascular endothelial growth factor A

About: Vascular endothelial growth factor A is a research topic. Over the lifetime, 15203 publications have been published within this topic receiving 1271498 citations. The topic is also known as: vascular endothelial growth factor A & vascular endothelial growth factor A165.


Papers
More filters
Journal ArticleDOI
23 Jul 1999-Cell
TL;DR: Targeted inactivation or truncation of the beta-catenin-binding cytosolic domain of the VE-cadherin gene was found to affect assembly of endothelial cells in vascular plexi, but to impair their subsequent remodeling and maturation, causing lethality at 9.5 days of gestation.

1,320 citations

Journal ArticleDOI
TL;DR: It is shown that blood vessels in both a xenografted tumor and primary human tumors contain a sizable fraction of immature blood vessels that have not yet recruited periendothelial cells, suggesting that the unique dependence on VEGF of blood vessels lacking periENDothelial Cells can be exploited to reduce an existing tumor vasculature.
Abstract: Features that distinguish tumor vasculatures from normal blood vessels are sought to enable the destruction of preformed tumor vessels. We show that blood vessels in both a xenografted tumor and primary human tumors contain a sizable fraction of immature blood vessels that have not yet recruited periendothelial cells. These immature vessels are selectively obliterated as a consequence of vascular endothelial growth factor (VEGF) withdrawal. In a xenografted glioma, the selective vulnerability of immature vessels to VEGF loss was demonstrated by downregulating VEGF transgene expression using a tetracycline-regulated expression system. In human prostate cancer, the constitutive production of VEGF by the glandular epithelium was suppressed as a consequence of androgen-ablation therapy. VEGF loss led, in turn, to selective apoptosis of endothelial cells in vessels devoid of periendothelial cells. These results suggest that the unique dependence on VEGF of blood vessels lacking periendothelial cells can be exploited to reduce an existing tumor vasculature.

1,312 citations

Journal ArticleDOI
06 Mar 1997-Nature
TL;DR: The molecular cloning, using expression cloning strategy, of an Ox-LDL receptor from vascular endothelial cells is reported, which is a membrane protein that belongs structurally to the C-type lectin family, and is expressed in vivo in vascular endothelium and vascular-rich organs.
Abstract: Endothelial dysfunction or activation elicited by oxidatively modified low-density lipoprotein (Ox-LDL) has been implicated in the pathogenesis of atherosclerosis1–4, characterized by intimal thickening and lipid deposition in the arteries. Ox-LDL and its lipid constituents impair endothelial production of nitric oxide, and induce the endothelial expression of leukocyte adhesion molecules and smooth-muscle growth factors, which may be involved in atherogenesis5–7. Vascular endothelial cells in culture8,9 and in vivo10,11 internalize and degrade Ox-LDL through a putative receptor-mediated pathway that does not involve macrophage scavenger receptors12–15. Here we report the molecular cloning, using expression cloning strategy, of an Ox-LDL receptor from vascular endothelial cells. The cloned receptor is a membrane protein that belongs structurally to the C-type lectin family, and is expressed in vivo in vascular endothelium and vascular-rich organs.

1,309 citations

Journal ArticleDOI
TL;DR: It is shown that acute administration of angiopoietin-1 does indeed protect adult vasculature from leaking, countering the potentially lethal actions of VEGF and inflammatory agents.
Abstract: Pathological increases in vascular leakage lead to edema and swelling, causing serious problems in brain tumors, in diabetic retinopathy, after strokes, during sepsis and also in inflammatory conditions such as rheumatoid arthritis and asthma. Although many agents and disease processes increase vascular leakage, no known agent specifically makes vessels resistant to leaking. Vascular endothelial growth factor (VEGF) and the angiopoietins function together during vascular development, with VEGF acting early during vessel formation, and angiopoietin-1 acting later during vessel remodeling, maturation and stabilization. Although VEGF was initially called vascular permeability factor, there has been less focus on its permeability actions and more effort devoted to its involvement in vessel growth and applications in ischemia and cancer. Recent transgenic approaches have confirmed the profound permeability effects of VEGF (refs. 12-14), and have shown that transgenic angiopoietin-1 acts reciprocally as an anti-permeability factor when provided chronically during vessel formation, although it also profoundly affects vascular morphology when thus delivered. To be useful clinically, angiopoietin-1 would have to inhibit leakage when acutely administered to adult vessels, and this action would have to be uncoupled from its profound angiogenic capabilities. Here we show that acute administration of angiopoietin-1 does indeed protect adult vasculature from leaking, countering the potentially lethal actions of VEGF and inflammatory agents.

1,306 citations

Journal Article
TL;DR: The hypothesis that VEGF is an important angiogenic factor in primary and metastatic human colon cancer is supported and expression and vessel counts may aid in predicting patients at risk for metastasis from colon cancer.
Abstract: We studied the correlation between expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and their receptors with vascularity, metastasis, and proliferative index of human colon cancers. Immunohistochemical analyses using antibodies against VEGF, bFGF, their receptors (KDR, flt-1, bek, and flg), factor VIII, and proliferating cell nuclear antigen were carried out on archival specimens of 52 human colon carcinomas and 10 adenomas. Vessels were quantitated by light microscopy (x200), and the intensity of staining for VEGF and bFGF was assessed on a scale of 0-3+. The presence or absence of immunostaining for KDR, flt-1, bek, and flg was evaluated in endothelial cells, and proliferation was determined by counting the number of proliferating cell nuclear antigen-positive cells per 500 tumor cells. Expression of VEGF and KDR was higher in metastatic than in nonmetastatic neoplasms and directly correlated with the extent of neovascularization and the degree of proliferation, whereas expression of bFGF, flt-1, bek, and flg did not differ among tumor types. Vessel counts were greater in metastatic tumors than in nonmetastatic tumors. These findings support the hypothesis that VEGF is an important angiogenic factor in primary and metastatic human colon cancer. VEGF expression and vessel counts may aid in predicting patients at risk for metastasis from colon cancer.

1,287 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
89% related
Cell culture
133.3K papers, 5.3M citations
89% related
Cytokine
79.2K papers, 4.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202394
2022189
2021293
2020347
2019306
2018333