scispace - formally typeset
Search or ask a question
Topic

Vascular endothelial growth factor A

About: Vascular endothelial growth factor A is a research topic. Over the lifetime, 15203 publications have been published within this topic receiving 1271498 citations. The topic is also known as: vascular endothelial growth factor A & vascular endothelial growth factor A165.


Papers
More filters
Journal ArticleDOI
TL;DR: An invitro model of hypoxic neuroprotection in cerebellar granule neurons is developed and a sequential requirement for VEGF/VEGFR-2 activation and Akt/PKB phosphorylation for neuronal survival mediated by hypoxic preconditioning is indicated and V EGF is proposed as a hypoxia-induced neurotrophic factor.
Abstract: Hypoxic preconditioning provides protection against ischemic brain lesions in animal models of cerebral ischemia–hypoxia. To analyze the underlying molecular mechanisms, we developed an invitro model of hypoxic neuroprotection in cerebellar granule neurons (CGN) by reducing the oxygen tension to 1–5% for 1–24 hr. Exposure to 5% O2 for 9 hr resulted in reduction of cell death after potassium deprivation, treatment with 100 μm glutamate, or 500 μm 3-nitroproprioninc acid (3-NP) by 46, 22, and 55%, respectively. Shorter (1 or 3 hr) or longer (>12 hr) intervals or pretreatment with lower oxygen tension failed to rescue CGN from death. In contrast, toxicity of four different chemotherapeutic drugs [1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, cisplatine, topotecane, and vincristine] was unaffected by hypoxic preconditioning. The induction of protective effects was dependent on new protein synthesis. Protein levels of B-cell lymphoma protein-2 (BCL-2), BCL-xL/S, heat shock protein 70/90, and BCL-2-associated death protein remained unaltered. CGN incubated at 5% O2 for 9 hr showed increased levels of the vascular endothelial growth factor (VEGF), the VEGF receptor-2 (VEGFR-2), phosphorylated Akt/protein kinase B (PKB), and extracellular signal-regulated kinase 1 (ERK1). Incubation with a neutralizing anti-VEGF antibody, a monoclonal antibody to VEGFR-2, wortmannin, or antisense-Akt/PKB, but not treatment with U0126, an ERK-inhibitor, reverted the resistance acquired by hypoxic preconditioning. Inhibition of VEGFR-2 blocked the activation of Akt/PKB. Finally, pretreatment with recombinant VEGF resulted in a hypoxia-resistant phenotype in the absence of hypoxic preconditioning. Our data are indicating a sequential requirement for VEGF/VEGFR-2 activation and Akt/PKB phosphorylation for neuronal survival mediated by hypoxic preconditioning and propose VEGF as a hypoxia-induced neurotrophic factor.

294 citations

Journal ArticleDOI
TL;DR: The data show for the first time that, in addition to inhibiting tumor cell proliferation, metformin treatment inhibits both angiogenesis and metastatic spread of ovarian cancer.

293 citations

Journal Article
TL;DR: Observations indicate a close link between beta-catenin signaling and the regulation of VEGF-A expression in colon cancer.
Abstract: To evaluate whether beta-catenin signaling has a role in the regulation of angiogenesis in colon cancer, a series of angiogenesis-related gene promoters was analyzed for beta-catenin/TCF binding sites. Strikingly, the gene promoter of human vascular endothelial growth factor (VEGF, or VEGF-A) contains seven consensus binding sites for beta-catenin/TCF. Analysis of laser capture microdissected human colon cancer tissue indicated a direct correlation between up-regulation of VEGF-A expression and adenomatous polyposis coli (APC) mutational status (activation of beta-catenin signaling) in primary tumors. In metastases, this correlation was not observed. Analysis by immunohistochemistry of intestinal polyps in mice heterozygous for the multiple intestinal neoplasia gene (Min/+) at 5 months revealed an increase and redistribution of VEGF-A in proximity to those cells expressing nuclear beta-catenin with a corresponding increase in vessel density. Transfection of normal colon epithelial cells with activated beta-catenin up-regulated levels of VEGF-A mRNA and protein by 250-300%. When colon cancer cells with elevated beta-catenin levels were treated with beta-catenin antisense oligodeoxynucleotides, VEGF-A expression was reduced by more than 50%. Taken together, our observations indicate a close link between beta-catenin signaling and the regulation of VEGF-A expression in colon cancer.

293 citations

Journal ArticleDOI
04 Feb 2000-Cell
TL;DR: Src kinases play an sidered to be the catalytic domains of receptors that important role in lymphokine-mediated cell survival and lack intrinsic catalytic activities, including protein tyrosine kinases of cell membranes.

293 citations

Journal ArticleDOI
TL;DR: The results indicate that stem cells engineered with biodegradable polymer nanoparticles may be therapeutic tools for vascularizing tissue constructs and treating ischemic disease.
Abstract: Stem cells hold great potential as cell-based therapies to promote vascularization and tissue regeneration. However, the use of stem cells alone to promote angiogenesis remains limited because of insufficient expression of angiogenic factors and low cell viability after transplantation. Here, we have developed vascular endothelial growth factor (VEGF) high-expressing, transiently modified stem cells for the purposes of promoting angiogenesis. Nonviral, biodegradable polymeric nanoparticles were developed to deliver hVEGF gene to human mesenchymal stem cells (hMSCs) and human embryonic stem cell-derived cells (hESdCs). Treated stem cells demonstrated markedly enhanced hVEGF production, cell viability, and engraftment into target tissues. S.c. implantation of scaffolds seeded with VEGF-expressing stem cells (hMSCs and hESdCs) led to 2- to 4-fold-higher vessel densities 2 weeks after implantation, compared with control cells or cells transfected with VEGF by using Lipofectamine 2000, a leading commercial reagent. Four weeks after intramuscular injection into mouse ischemic hindlimbs, genetically modified hMSCs substantially enhanced angiogenesis and limb salvage while reducing muscle degeneration and tissue fibrosis. These results indicate that stem cells engineered with biodegradable polymer nanoparticles may be therapeutic tools for vascularizing tissue constructs and treating ischemic disease.

292 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
89% related
Cell culture
133.3K papers, 5.3M citations
89% related
Cytokine
79.2K papers, 4.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202394
2022189
2021293
2020347
2019306
2018333