scispace - formally typeset
Search or ask a question
Topic

Vascular endothelial growth factor A

About: Vascular endothelial growth factor A is a research topic. Over the lifetime, 15203 publications have been published within this topic receiving 1271498 citations. The topic is also known as: vascular endothelial growth factor A & vascular endothelial growth factor A165.


Papers
More filters
Journal ArticleDOI
TL;DR: VEGF-A appears to be a novel mediator of IBD by promoting intestinal angiogenesis and inflammation, and agents that block VEGf-A signaling might reduce intestinal inflammation in patients with IBD.

287 citations

Journal ArticleDOI
TL;DR: The results demonstrate the expression of VEGF in the CL but not in mural granulosa cells, suggesting a temporal relation between V EGF expression and growth of capillary vessels, and suggest that VegF is involved in the process of CL angiogenesis.
Abstract: In the course of the development of the ovarian follicle and differentiation of granulosa cells into corpus luteum (CL), extensive changes in the microvasculature of these structures take place. This suggests the local release of angiogenic factors. In the present work we examined whether a newly described secreted vascular endothelial growth factor (VEGF) is expressed in normal rat ovary by in situ hybridization. Our results demonstrate the expression of VEGF in the CL but not in mural granulosa cells, suggesting a temporal relation between VEGF expression and growth of capillary vessels. The hybridization pattern in the CL was consistent with localization of VEGF message to luteal cells. Expression of VEGF was detected also in cumulus oophorus cells. These findings suggest that VEGF is involved in the process of CL angiogenesis.

287 citations

Journal ArticleDOI
23 Jul 2009-Blood
TL;DR: It is shown that both HIF-1 and -2, but not NF-kappaB, are important transcriptional effectors regulating the responses of macrophages to such a period of hypoxia, and their role in the hypoxic induction of many of these key genes is elucidated.

287 citations

Journal ArticleDOI
TL;DR: It is shown that conditionally knocking out Vegfa in adult mouse retinal pigmented epithelial (RPE) cells, which regulate retinal homeostasis, rapidly leads to vision loss and ablation of the choriocapillaris, the major blood supply for the outer retina and photoreceptor cells.
Abstract: Current therapies directed at controlling vascular abnormalities in cancers and neovascular eye diseases target VEGF and can slow the progression of these diseases. While the critical role of VEGF in development has been well described, the function of locally synthesized VEGF in the adult eye is incompletely understood. Here, we show that conditionally knocking out Vegfa in adult mouse retinal pigmented epithelial (RPE) cells, which regulate retinal homeostasis, rapidly leads to vision loss and ablation of the choriocapillaris, the major blood supply for the outer retina and photoreceptor cells. This deletion also caused rapid dysfunction of cone photoreceptors, the cells responsible for fine visual acuity and color vision. Furthermore, Vegfa deletion showed significant downregulation of multiple angiogenic genes in both physiological and pathological states, whereas the deletion of the upstream regulatory transcriptional factors HIFs did not affect the physiological expressions of angiogenic genes. These results suggest that endogenous VEGF provides critical trophic support necessary for retinal function. Targeting factors upstream of VEGF, such as HIFs, may be therapeutically advantageous compared with more potent and selective VEGF antagonists, which may have more off-target inhibitory trophic effects.

287 citations

Journal ArticleDOI
TL;DR: Data suggest that bone‐marrow‐derived stromal cells may have the capacity to participate in tumor angiogenesis through regulation of their angiogenic properties under an atmosphere of low oxygen that closely approximates the tumor microenvironment.
Abstract: Recent evidence indicates that bone-marrow-derived stromal cells (MSCs) have a histology coherent with endothelial cells that may enable them to contribute to tumor angiogenesis through yet undefined mechanisms. In this work, we investigated the angiogenic properties of murine MSCs involved in extracellular matrix degradation and in neovascularization that could take place in a hypoxic environment such as that encountered in tumor masses. MSCs were cultured in normoxia (95% air and 5% CO(2)) or in hypoxia (1% oxygen, 5% CO(2), and 94% nitrogen). We found that hypoxic culture conditions rapidly induced MSC migration and three-dimensional capillary-like structure formation on Matrigel. In vitro, MSC migration was induced by growth-factor- and cytokine-enriched conditioned media isolated from U-87 glioma cells as well as from MSCs cultured in hypoxic conditions, suggesting both paracrine and autocrine regulatory mechanisms. Although greater vascular endothelial growth factor levels were secreted by MSCs in hypoxic conditions, this growth factor alone could not explain their greater migration. Interestingly, matrix metalloproteinase (MMP)-2 mRNA expression and protein secretion were downregulated, while those of membrane-type (MT)1-MMP were strongly induced by hypoxia. Functional inhibition of MT1-MMP by a blocking antibody strongly suppressed MSC ability to migrate and generate capillary-like structures. Collectively, these data suggest that MSCs may have the capacity to participate in tumor angiogenesis through regulation of their angiogenic properties under an atmosphere of low oxygen that closely approximates the tumor microenvironment.

286 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
89% related
Cell culture
133.3K papers, 5.3M citations
89% related
Cytokine
79.2K papers, 4.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202394
2022189
2021293
2020347
2019306
2018333