scispace - formally typeset
Search or ask a question
Topic

Vascular endothelial growth factor A

About: Vascular endothelial growth factor A is a research topic. Over the lifetime, 15203 publications have been published within this topic receiving 1271498 citations. The topic is also known as: vascular endothelial growth factor A & vascular endothelial growth factor A165.


Papers
More filters
Journal ArticleDOI
TL;DR: In the human, primitive blood vessels appear as early as day 15, and a circulation with a beating heart is already established by the end of the third week.
Abstract: I. Introduction THE establishment of a vascular supply is a critical requirement for cellular inflow of nutrients, outflow of waste products, and gas exchange in most tissues and organs (1). In endocrine glands, the vascularization not only serves such needs but also provides a pathway for the specific secretory products (2, 3). Furthermore, in the anterior pituitary (4–6) and in the adrenal medulla (7, 8), an unusual angioarchitecture, where a portal capillary plexus delivers venous blood originating from an adjacent gland, is intimately involved in the control of the secretory activity. In the adrenal medulla, this vascular design may even determine the ultimate secretory product (8). Not surprisingly, the cardiovascular system is the first organ system to develop and reach a functional state in an embryo (9–12). In the human, primitive blood vessels appear as early as day 15, and a circulation with a beating heart is already established by the end of the third week.

1,703 citations

Journal ArticleDOI
TL;DR: The use of RAPA, instead of cyclosporine, may reduce the chance of recurrent or de novo cancer in high-risk transplant patients and show antiangiogenic activities linked to a decrease in production of vascular endothelial growth factor and to a markedly inhibited response ofascular endothelial cells to stimulation by VEGF.
Abstract: Conventional immunosuppressive drugs have been used effectively to prevent immunologic rejection in organ transplantation. Individuals taking these drugs are at risk, however, for the development and recurrence of cancer. In the present study we show that the new immunosuppressive drug rapamycin (RAPA) may reduce the risk of cancer development while simultaneously providing effective immunosuppression. Experimentally, RAPA inhibited metastatic tumor growth and angiogenesis in in vivo mouse models. In addition, normal immunosuppressive doses of RAPA effectively controlled the growth of established tumors. In contrast, the most widely recognized immunosuppressive drug, cyclosporine, promoted tumor growth. From a mechanistic perspective, RAPA showed antiangiogenic activities linked to a decrease in production of vascular endothelial growth factor (VEGF) and to a markedly inhibited response of vascular endothelial cells to stimulation by VEGF. Thus, the use of RAPA, instead of cyclosporine, may reduce the chance of recurrent or de novo cancer in high-risk transplant patients.

1,701 citations

Journal ArticleDOI
TL;DR: This work has engineer a very potent high-affinity VEGF blocker that has markedly enhanced pharmacokinetic properties and effectively suppresses tumor growth and vascularization in vivo, resulting in stunted and almost completely avascular tumors.
Abstract: Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. Initial attempts to block VEGF by using a humanized monoclonal antibody are beginning to show promise in human cancer patients, underscoring the importance of optimizing VEGF blockade. Previous studies have found that one of the most effective ways to block the VEGF-signaling pathway is to prevent VEGF from binding to its normal receptors by administering decoy-soluble receptors. The highest-affinity VEGF blocker described to date is a soluble decoy receptor created by fusing the first three Ig domains of VEGF receptor 1 to an Ig constant region; however, this fusion protein has very poor in vivo pharmacokinetic properties. By determining the requirements to maintain high affinity while extending in vivo half life, we were able to engineer a very potent high-affinity VEGF blocker that has markedly enhanced pharmacokinetic properties. This VEGF-Trap effectively suppresses tumor growth and vascularization in vivo, resulting in stunted and almost completely avascular tumors. VEGF-Trap-mediated blockade may be superior to that achieved by other agents, such as monoclonal antibodies targeted against the VEGF receptor.

1,700 citations

Journal ArticleDOI
TL;DR: It is reported that embryonic angiogenesis in mice was not affected by deficiency of PlGF, andTransplantation of wild-type bone marrow rescued the impairedAngiogenesis and collateral growth in Pgf−/− mice, indicating that PlGF might have contributed to vessel growth in the adult by mobilizing bone-marrow–derived cells.
Abstract: Vascular endothelial growth factor (VEGF) stimulates angiogenesis by activating VEGF receptor-2 (VEGFR-2). The role of its homolog, placental growth factor (PlGF), remains unknown. Both VEGF and PlGF bind to VEGF receptor-1 (VEGFR-1), but it is unknown whether VEGFR-1, which exists as a soluble or a membrane-bound type, is an inert decoy or a signaling receptor for PlGF during angiogenesis. Here, we report that embryonic angiogenesis in mice was not affected by deficiency of PlGF (Pgf-/-). VEGF-B, another ligand of VEGFR-1, did not rescue development in Pgf-/- mice. However, loss of PlGF impaired angiogenesis, plasma extravasation and collateral growth during ischemia, inflammation, wound healing and cancer. Transplantation of wild-type bone marrow rescued the impaired angiogenesis and collateral growth in Pgf-/- mice, indicating that PlGF might have contributed to vessel growth in the adult by mobilizing bone-marrow-derived cells. The synergism between PlGF and VEGF was specific, as PlGF deficiency impaired the response to VEGF, but not to bFGF or histamine. VEGFR-1 was activated by PlGF, given that anti-VEGFR-1 antibodies and a Src-kinase inhibitor blocked the endothelial response to PlGF or VEGF/PlGF. By upregulating PlGF and the signaling subtype of VEGFR-1, endothelial cells amplify their responsiveness to VEGF during the 'angiogenic switch' in many pathological disorders.

1,664 citations

Journal ArticleDOI
TL;DR: The KDR receptor tyrosine kinase shares structural similarities with a recently reported receptor for VEGF, flt, in a manner reminiscent of the similarities between the alpha and beta forms of the PDGF receptors.

1,662 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
89% related
Cell culture
133.3K papers, 5.3M citations
89% related
Cytokine
79.2K papers, 4.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202394
2022189
2021293
2020347
2019306
2018333