Topic

# Vector control

About: Vector control is a research topic. Over the lifetime, 17235 publications have been published within this topic receiving 252278 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this article, the authors proposed a limit cycle control of both flux and torque using optimum PWM output voltage; a switching table is employed for selecting the optimum inverter output voltage vectors so as to attain as fast a torque response, as low an inverter switching frequency, and as low harmonic losses as possible.

Abstract: New quick-response and high-efficiency control of an induction motor, which is quite different from that of the field-oriented control is proposed. The most obvious differences between the two are as follows. 1) The proposed scheme is based on limit cycle control of both flux and torque using optimum PWM output voltage; a switching table is employed for selecting the optimum inverter output voltage vectors so as to attain as fast a torque response, as low an inverter switching frequency, and as low harmonic losses as possible. 2) The efficiency optimization in the steady-state operation is also considered; it can be achieved by controlling the amplitude of the flux in accordance with the torque command. To verify the feasibility of this scheme, experimentation, simulation, and comparison with field-oriented control are carried out. The results prove the excellent characteristics for torque response and efficiency, which confirm the validity of this control scheme.

3,316 citations

•

09 Mar 1990

TL;DR: In this paper, the authors describe the motion of a drive with Lumped Inertia and two Axes Drive in Polar Coordinates, and the integration of the simplified Equation of Motion.

Abstract: 1. Elementary Principles of Mechanics.- 1.1 Newtons Law.- 1.2 Moment of Inertia.- 1.3 Effect of Gearing.- 1.4 Power and Energy.- 1.5 Experimental Determination of Inertia.- 2. Dynamics of a Mechanical Drive.- 2.1 Equations Describing the Motion of a Drive with Lumped Inertia.- 2.2 Two Axes Drive in Polar Coordinates.- 2.3 Steady State Characteristics of Motors and Loads.- 2.4 Stable and Unstable Operating Points.- 3. Integration of the Simplified Equation of Motion.- 3.1 Solution of the Linearised Equation.- 3.1.1 Start of a Motor with Shunt-type Characteristic at No-load.- 3.1.2 Starting the Motor with a Load Torque Proportional to Speed.- 3.1.3 Loading Transient of the Motor Initially Running at No-load Speed.- 3.1.4 Starting of a DC Motor by Sequentially Short-circuiting Starting Resistors.- 3.2 Analytical Solution of Nonlinear Differential Equation.- 3.3 Numerical and Graphical Integration.- 4. Thermal Effects in Electrical Machines.- 4.1 Power Losses and Temperature Restrictions.- 4.2 Heating of a Homogeneous Body.- 4.3 Different Modes of Operation.- 4.3.1 Continuous Duty.- 4.3.2 Short Time Intermittent Duty.- 4.3.3 Periodic intermittent duty.- 5. Separately Excited DC Machine.- 5.1 Introduction.- 5.2 Mathematical Model of the DC Machine.- 5.3 Steady State Characteristics with Armature and Field Control.- 5.3.1 Armature Control.- 5.3.2 Field Control.- 5.3.3 Combined Armature and Field Control.- 5.4 Dynamic Behaviour of DC Motor with Constant Flux.- 6. DC Motor with Series Field Winding.- 6.1 Block Diagram of a Series-wound Motor.- 6.2 Steady State Characteristics.- 7. Control of a Separately Excited DC Machine.- 7.1 Introduction.- 7.2 Cascade Control of DC Motor in the Armature Control Region.- 7.3 Cascade Control of DC Motor in the Field-weakening Region.- 7.4 Supplying a DC Motor from a Rotating Generator.- 8. Static Converter as a Power Actuator for DC Drives.- 8.1 Electronic Switching Devices.- 8.2 Line-commutated Converter in Single-phase Bridge Connection.- 8.3 Line-commutated Converter in Three-phase Bridge Connection.- 8.4 Line-commutated Converters with Reduced Reactive Power.- 8.5 Control Loop Containing an Electronic Power Converter.- 9. Control of Converter-supplied DC Drives.- 9.1 DC Drive with Line-commutated Converter.- 9.2 DC Drives with Force-commutated Converters.- 10. Symmetrical Three-Phase AC Machines.- 10.1 Mathematical Model of a General AC Machine.- 10.2 Induction Motor with Sinusoidal Symmetrical Voltages in Steady State.- 10.2.1 Stator Current, Current Locus.- 10.2.2 Steady State Torque, Efficiency.- 10.2.3 Comparison with Practical Motor Designs.- 10.2.4 Starting of the Induction Motor.- 10.3 Induction Motor with Impressed Voltages of Arbitrary Wave- forms.- 10.4 Induction Motor with Unsymmetrical Line Voltages in Steady State.- 10.4.1 Symmetrical Components.- 10.4.2 Single-phase Induction Motor.- 10.4.3 Single-phase Electric Brake for AC Crane-Drives.- 10.4.4 Unsymmetrical Starting Circuit for Induction Motor.- 11. Power Supplies for Adjustable Speed AC Drives.- 11.1 Pulse width modulated (PWM) Voltage Source Transistor Converter (IGBT).- 11.2 Voltage Source PWM Thyristor Converter.- 11.3 Current Source Thyristor Converters.- 11.4 Converter Without DC Link (Cycloconverter).- 12. Control of Induction Motor Drives.- 12.1 Control of Induction Motor Based on Steady State Machine Model.- 12.2 Rotor Flux Orientated Control of Current-fed Induction Motor.- 12.2.1 Principle of Field Orientation.- 12.2.2 Acquisition of Flux Signals.- 12.2.3 Effects of Residual Lag of the Current Control Loops.- 12.2.4 Digital Signal Processing.- 12.2.5 Experimental Results.- 12.2.6 Effects of a Detuned Flux Model.- 12.3 Control of Voltage-fed Induction Motor.- 12.4 Field Orientated Control of Induction Motor with a Current Source Converter.- 12.5 Control of an Induction Motor Without a Mechanical Sensor.- 12.5.1 Machine Model in Stator Flux Coordinates.- 12.5.2 Example of an "Encoderless Control".- 12.5.3 Simulation and Experimental Results.- 12.6 Control of an Induction Motor Using a Combined Flux Model.- 13. Induction Motor Drive with Reduced Speed Range.- 13.1 Doubly-fed Induction Machine with Constant Stator Frequency and Field-orientated Rotor Current.- 13.2 Control of a Line-side Voltage Source Converter as a Reactive Power Compensator.- 13.3 Wound-Rotor Induction with Slip-Power Recovery.- 14. Variable Frequency Synchronous Motor Drives.- 14.1 Control of Synchronous Motors with PM Excitation.- 14.2 Synchronous Motor with Field- and Damper-Windings.- 14.3 Synchronous Motor with Load-commutated Inverter (LCI- Drive).- 15. Some Applications of Controlled Electrical Drives.- 15.1 Speed Controlled Drives.- 15.2 Lineax Position Control.- 15.3 Lineax Position Control with Moving Reference Point.- 15.4 Time-optimal Position Control with Fixed Reference Point.- 15.5 Time-optimal Position Control with Moving Reference Point.

2,882 citations

•

01 Jan 2015

TL;DR: In this paper, the authors present a simulation of a six-step Thyristor Inverter with three-level Inverters and three-phase Bridge Invergers. And they present a Neural Network in Identification and Control toolbox.

Abstract: (NOTE: Each chapter begins with an Introduction and concludes with a Summary and References.) Preface. List of Principal Symbols. 1. Power Semiconductor Devices. Diodes. Thyristors. Triacs. Gate Turn-Off Thyristors (GTOs). Bipolar Power or Junction Transistors (BPTs or BJTs). Power MOSFETs. Static Induction Transistors (SITs). Insulated Gate Bipolar Transistors (IGBTs). MOS-Controlled Thyristors (MCTs). Integrated Gate-Commutated Thyristors (IGCTs). Large Band-Gap Materials for Devices. Power Integrated Circuits (PICs). 2. AC Machines for Drives. Induction Machines. Synchronous Machines. Variable Reluctance Machine (VRM). 3. Diodes and Phase-Controlled Converters. Diode Rectifiers. Thyristor Converters. Converter Control. EMI and Line Power Quality Problems. 4. Cycloconverters. Phase-Controlled Cycloconverters. Matrix Converters. High-Frequency Cycloconverters. 5. Voltage-Fed Converters. Single-Phase Inverters. Three-Phase Bridge Inverters. Multi-Stepped Inverters. Pulse Width Modulation Techniques. Three-Level Inverters. Hard Switching Effects. Resonant Inverters. Soft-Switched Inverters. Dynamic and Regenerative Drive Braking. PWM Rectifiers. Static VAR Compensators and Active Harmonic Filters. Introduction to Simulation-MATLAB/SIMULINK. 6. Current-Fed Converters. General Operation of a Six-Step Thyristor Inverter. Load-Commutated Inverters. Force-Commutated Inverters. Harmonic Heating and Torque Pulsation. Multi-Stepped Inverters. Inverters with Self-Commutated Devices. Current-Fed vs Voltage-Fed Converters. 7. Induction Motor Slip-Power Recovery Drives. Doubly-Fed Machine Speed Control by Rotor Rheostat. Static Kramer Drive. Static Scherius Drive. 8. Control and Estimation of Induction Motor Drives. Induction Motor Control with Small Signal Model. Scalar Control. Vector or Field-Oriented Control. Sensorless Vector Control. Direct Torque and Flux Control (DTC). Adaptive Control. Self-Commissioning of Drive. 9. Control and Estimation of Synchronous Motor Drives. Sinusoidal SPM Machine Drives. Synchronous Reluctance Machine Drives. Sinusoidal IPM Machine Drives. Trapezoidal SPM Machine Drives. Wound-Field Synchronous Machine Drives. Sensorless Control. Switched Reluctance Motor (SRM) Drives. 10. Expert System Principles and Applications. Expert System Principles. Expert System Shell. Design Methodology. Applications. Glossary. 11. Fuzzy Logic Principles and Applications. Fuzzy Sets. Fuzzy System. Fuzzy Control. General Design Methodology. Applications. Fuzzy Logic Toolbox. Glossary. 12. Neural Network Principles and Applications. The Structure of a Neuron. Artificial Neural Network. Other Networks. Neural Network in Identification and Control. General Design Methodology. Applications. Neuro-Fuzzy Systems. Demo Program with Neural Network Toolbox. Glossary. Index.

2,836 citations

••

01 May 1996TL;DR: The paper describes the engineering and design of a doubly fed induction generator (DFIG), using back-to-back PWM voltage-source converters in the rotor circuit, which results in independent control of active and reactive power drawn the supply, while ensuring sinusoidal supply currents.

Abstract: The paper describes the engineering and design of a doubly fed induction generator (DFIG), using back-to-back PWM voltage-source converters in the rotor circuit. A vector-control scheme for the supply-side PWM converter results in independent control of active and reactive power drawn the supply, while ensuring sinusoidal supply currents. Vector control of the rotor-connected converter provides for wide speed-range operation; the vector scheme is embedded in control loops which enable optimal speed tracking for maximum energy capture from the wind. An experimental rig, which represents a 7.5 kW variable speed wind-energy generation system is described, and experimental results are given that illustrate the excellent performance characteristics of the system. The paper considers a grid-connected system; a further paper will describe a stand-alone system.

2,618 citations

•

01 Jan 1998

TL;DR: This paper presents a space-phasor model of A.C. machines based on artificial intelligence-based steady-state and transient analysis of electrical machines, estimators and investigates the role of magnetic saturation in the control of these machines.

Abstract: 1. Introduction 2. The space-phasor model of A.C. machines 3. Vector and direct torque control of synchronous machines 4. Vector and direct torque control of induction machines 5. Torque control of switched reluctance motors 6. Effects of magnetic saturation 7. Artificial intelligence-based steady-state and transient analysis of electrical machines, estimators 8. Self-commissioning Index

2,343 citations