scispace - formally typeset
Search or ask a question
Topic

Vehicle dynamics

About: Vehicle dynamics is a research topic. Over the lifetime, 12909 publications have been published within this topic receiving 204091 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A numerical method for the time-optimal control of the race car is presented and is capable of operation with arbitrarily complex vehicle models as it requires only limited access to the vehicle model state vector.
Abstract: A numerical method for the time-optimal control of the race car is presented. The method is then used to perform the role of the driver in numerical simulations of manoeuvres at the limit of race car performance. The method does not attempt to model the driver but rather replaces the driver with methods normally associated with numerical optimal control. The method simultaneously finds the optimal driven line and the driver control inputs (steer, throttle and brake) to drive this line in minimum time. In principle, the method is capable of operation with arbitrarily complex vehicle models as it requires only limited access to the vehicle model state vector. It also requires solution of the differential equation representing the vehicle model in only the forward time direction and is hence capable of simulating the full vehicle transient response.

57 citations

Proceedings ArticleDOI
10 Jun 2009
TL;DR: This paper presents a methodology for robust nonlinear control of the rigid-body longitudinal hypersonic vehicle dynamics which employs only the elevator as aerodynamic control surface and reposes upon a nonlinear transformation of the equations-of-motion into the interconnection of systems in so-called feedback and feed-forward forms.
Abstract: Longitudinal rigid-body models of air-breathing hypersonic vehicle dynamics are characterized by exponentially unstable zero-dynamics when longitudinal velocity and flight-path angle (FPA) are selected as regulated output. To enable application of stable dynamic inversion methods (and their adaptive counterparts), previous studies have considered the addition of a canard control surface to eliminate the occurrence of the unstable zero; however, the addition of a canard may negatively impact the design of the thermal protection system. In this paper, we present a methodology for robust nonlinear control of the rigid-body longitudinal hypersonic vehicle dynamics which employs only the elevator as aerodynamic control surface. The method reposes upon a nonlinear transformation of the equations-of-motion into the interconnection of systems in so-called feedback and feed-forward forms that allows the combination of high-gain and low-amplitude feedback, achieved through the use of saturated functions. Simulation results using the flexible vehicle model are presented to illustrate the effectiveness of the method.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a 3D model of the dynamics of a railway vehicle for more complex applications and implemented it in a real-time hardware in the loop (HIL) test rig.
Abstract: Hardware in the loop (HIL) techniques are widely used for fast prototyping of control systems, electronic and mechatronic devices. In the railway field, several mechatronic on board subsystems are often tested and calibrated following the HIL approach. The accuracy of HIL tests depends on how the simulated virtual environment approximates the physical conditions. As the computational power available on real-time hardware grows, the demand for more complex and realistic models of railway vehicles for real-time application increases. In past research activities, the authors worked on the implementation of simplified real-time models for several applications and in particular for an HIL test rig devoted to the type approval of wheel slide protection systems. The activity has then been focused on the development of a three-dimensional model of the dynamics of a railway vehicle for more complex applications. The paper summarises the features and the results of the study.

57 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the problem of controlling an aerial robot connected to the ground by a passive cable or a passive rigid link, and provide a thorough characterization of this nonlinear dynamical robotic system in terms of fundamental properties such as differential flatness, controllability, and observability.
Abstract: In this paper, we consider the problem of controlling an aerial robot connected to the ground by a passive cable or a passive rigid link. We provide a thorough characterization of this nonlinear dynamical robotic system in terms of fundamental properties such as differential flatness, controllability, and observability. We prove that the robotic system is differentially flat with respect to two output pairs: elevation of the link and attitude of the vehicle; elevation of the link and longitudinal link force (e.g., cable tension, or bar compression). We show the design of an almost globally convergent nonlinear observer of the full state that resorts only to an onboard accelerometer and a gyroscope. We also design two almost globally convergent nonlinear controllers to track any sufficiently smooth time-varying trajectory of the two output pairs. Finally, we numerically test the robustness of the proposed method in several far-from-nominal conditions: nonlinear cross-coupling effects, parameter deviations, measurements noise, and nonideal actuators.

57 citations

Journal ArticleDOI
TL;DR: In this paper, a robust single-input fuzzy logic control (RSIFLC) was proposed for task-space trajectory control of an AUVMS employed for underwater manipulation tasks.
Abstract: In this paper, a robust single-input fuzzy logic control Robust Single Input Fuzzy Logic Controller (RSIFLC) scheme is proposed and applied for task-space trajectory control of an autonomous underwater vehicle manipulator system (AUVMS) employed for underwater manipulation tasks. The effectiveness of the proposed control scheme is numerically demonstrated on a planar underwater vehicle manipulator system [consisting of an underwater vehicle and a two link rotary (2R) serial planar manipulator]. The actuator and sensor dynamics of the system are also incorporated in the dynamical model of an AUVMS. The proposed control law consists of a feedforward term to exaggerate the control activity with immoderation from the known desired acceleration vector and an estimated perturbed term to compensate for the unknown effects namely external disturbances and unmodeled dynamics as a first part and a single-input fuzzy logic control as a feedback portion to enhance the overall closed-loop stability of the system as a second part. The primary objective of the proposed control scheme is to track the given end-effector task space trajectory despite of external disturbances, system uncertainties, and internal noises associated with the AUVMS. To show the efficacy of the proposed control scheme, comparison is made with conventional fuzzy logic control (CFLC), sliding mode control (SMC), and proportional–integral–derivative (PID) controllers. Simulation results confirmed that with the proposed control scheme, the AUVMS can successfully track the given desired spatial trajectory and gives better and robust control performance.

57 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
89% related
Control system
129K papers, 1.5M citations
87% related
Optimal control
68K papers, 1.2M citations
84% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Linear system
59.5K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023167
2022478
2021620
2020811
2019749
2018749