scispace - formally typeset
Search or ask a question
Topic

Vehicle dynamics

About: Vehicle dynamics is a research topic. Over the lifetime, 12909 publications have been published within this topic receiving 204091 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a novel approach to modeling the four quadrant dynamic response of thrusters as used for the motion control of ROV and AUV underwater vehicles is proposed. But the model is not suitable for the underwater vehicles with small size and respond quickly to commands.
Abstract: This paper proposes a novel approach to modeling the four quadrant dynamic response of thrusters as used for the motion control of ROV and AUV underwater vehicles. The significance is that these vehicles are small in size and respond quickly to commands. Precision in motion control will require further understanding of thruster performance than is currently available. The model includes a four quadrant mapping of the propeller blades lift and drag forces and is coupled with motor and fluid system dynamics. A series of experiments is described for both long and short period triangular, as well as square wave inputs. The model is compared favorably with experimental data for a variety of differing conditions and predicts that force overshoots are observed under conditions of rapid command changes. Use of the model will improve the control of dynamic thrust on these vehicles.

189 citations

Journal ArticleDOI
TL;DR: A new tire-road friction coefficient estimation algorithm based on measurements related to the lateral dynamics of the vehicle that does not require large longitudinal slip to provide reliable friction estimates and can work very effectively in identifying a slippery road.
Abstract: Vehicle control systems such as collision avoidance, adaptive cruise control, and automated lane-keeping systems as well as ABS and stability control systems can benefit significantly from being made "road-adaptive." The estimation of tire-road friction coefficient at the wheels allows the control algorithm in such systems to adapt to external driving conditions. This paper develops a new tire-road friction coefficient estimation algorithm based on measurements related to the lateral dynamics of the vehicle. A lateral tire force model parameterized as a function of slip angle, friction coefficient, normal force and cornering stiffness is used. A real-time parameter identification algorithm that utilizes measurements from a differential global positioning system (DGPS) system and a gyroscope is used to identify the tire-road friction coefficient and cornering stiffness parameters of the tire. The advantage of the developed algorithm is that it does not require large longitudinal slip in order to provide reliable friction estimates. Simulation studies indicate that a parameter convergence rate of 1 s can be obtained. Experiments conducted on both dry and slippery road indicate that the algorithm can work very effectively in identifying a slippery road.

189 citations

Journal ArticleDOI
TL;DR: An adaptive neural network (NN) control scheme is proposed for a quarter-car model, which is the active suspension system (ASS) with the time-varying vertical displacement and speed constraints and unknown mass of car body and it can prove the stability of the closed-loop system.
Abstract: In this paper, an adaptive neural network (NN) control scheme is proposed for a quarter-car model, which is the active suspension system (ASS) with the time-varying vertical displacement and speed constraints and unknown mass of car body. The NNs are used to approximate the unknown mass of car body. It is commonly known that the stability and security of the ASSs will be weakened when the constraints are violated. Thus, the control problem of the time-varying vertical displacement and speed constraints for the quarter-car ASSs is a very important task because of the demand of the handing safety. The time-varying barrier Lyapunov functions are used to guarantee the constraints of the vertical displacement not violated, and it can prove the stability of the closed-loop system. Finally, a simulation example for the ASSs is employed to show the feasibility and rationality of the proposed approach.

188 citations

Journal ArticleDOI
TL;DR: The experimental and simulation results are presented to demonstrate the improved performance in tracking accuracy, steering smoothness, and computational efficiency compared to the MPC and the full-state feedback control.
Abstract: This paper presents a preview steering control algorithm and its closed-loop system analysis and experimental validation for accurate, smooth, and computationally inexpensive path tracking of automated vehicles. The path tracking issue is formulated as an optimal control problem with dynamic disturbance, i.e., the future road curvature. A discrete-time preview controller is then designed on the top of a linear augmented error system, in which the disturbances within a finite preview window are augmented as part of the state vector. The obtained optimal steering control law is in an analytic form and consists of two parts: 1) a feedback control responding to tracking errors and 2) a feedforward control dealing with the future road curvatures. The designed control’s nature, capacity, computation load, and underlying mechanism are revealed by the analysis of system responses in the time domain and the frequency domain, theoretical steady-state error, and comparison with the model predictive control (MPC). The algorithm was implemented on an automated vehicle platform, a hybrid Lincoln MKZ. The experimental and simulation results are then presented to demonstrate the improved performance in tracking accuracy, steering smoothness, and computational efficiency compared to the MPC and the full-state feedback control.

188 citations

Journal ArticleDOI
TL;DR: In this paper, an H-infinity control method for a platoon of heterogeneous vehicles with uncertain vehicle dynamics and uniform communication delay is presented, and the requirements of string stability, robustness and tracking performance are explicitly satisfied by casting into the linear fractional transformation format, and a delay-dependent linear matrix inequality is derived to numerically solve the distributed controllers for each vehicle.
Abstract: Platoon formation of highway vehicles has the potential to significantly enhance road safety, improve highway utility, and increase traffic efficiency. However, various uncertainties and disturbances that are present in real-world driving conditions make the implementation of vehicular platoon a challenging problem. This study presents an H-infinity control method for a platoon of heterogeneous vehicles with uncertain vehicle dynamics and uniform communication delay. The requirements of string stability, robustness and tracking performance are systematically measured by the H-infinity norm, and explicitly satisfied by casting into the linear fractional transformation format. A delay-dependent linear matrix inequality is derived to numerically solve the distributed controllers for each vehicle. The performances of the controlled platoon are theoretically analysed by using a delay-dependent Lyapunov function which includes a linear quadratic function of states during the delay period. Simulations with a platoon of heterogeneous vehicles are conducted to demonstrate the effectiveness of the proposed method under random parameters and external disturbances.

187 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
89% related
Control system
129K papers, 1.5M citations
87% related
Optimal control
68K papers, 1.2M citations
84% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Linear system
59.5K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023167
2022478
2021620
2020811
2019749
2018749