scispace - formally typeset
Search or ask a question
Topic

Vehicle dynamics

About: Vehicle dynamics is a research topic. Over the lifetime, 12909 publications have been published within this topic receiving 204091 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the application of stochastic state estimators in vehicle dynamics control is discussed, where it is often unrealistic to assume that all vehicle states and the disturbances acting on it can be measured.
Abstract: This paper deals with the application of stochastic state estimators in vehicle dynamics control. It is often unrealistic to assume that all vehicle states and the disturbances acting on it can be measured. System states that cannot be measured directly, can be estimated by a Kalman Filter. The idea of the Kalman filter is to implement a model of the real system in an on-board computer in parallel with the system itself. This paper will give 3 examples of this principle applied to automotive systems.

187 citations

Journal ArticleDOI
TL;DR: This paper takes advantage of the features of driving motors to estimate the maximum transmissible torque output in real time based on a purely kinematic relationship and proposes an innovative controller that follows the estimated value directly and constrains the torque reference for slip prevention.
Abstract: Controlling an immeasurable state with an indirect control input is a difficult problem faced in traction control of vehicles. Research on motion control of electric vehicles (EVs) has progressed considerably, but traction control has not been so sophisticated and practical because of this difficulty. Therefore, this paper takes advantage of the features of driving motors to estimate the maximum transmissible torque output in real time based on a purely kinematic relationship. An innovative controller that follows the estimated value directly and constrains the torque reference for slip prevention is then proposed. By analysis and comparison with prior control methods, the resulting control design approach is shown to be more effective and more practical, both in simulation and on an experimental EV.

185 citations

Journal ArticleDOI
TL;DR: A fuzzy-based control algorithm that takes into account each vehicle's safe and comfortable distance and speed adjustment for collision avoidance and better traffic flow has been developed and showed good performance in testing in real-world scenarios.
Abstract: Vehicles equipped with intelligent systems designed to prevent accidents, such as collision warning systems (CWSs) or lane-keeping assistance (LKA), are now on the market. The next step in reducing road accidents is to coordinate such vehicles in advance not only to avoid collisions but to improve traffic flow as well. To this end, vehicle-to-infrastructure (V2I) communications are essential to properly manage traffic situations. This paper describes the AUTOPIA approach toward an intelligent traffic management system based on V2I communications. A fuzzy-based control algorithm that takes into account each vehicle's safe and comfortable distance and speed adjustment for collision avoidance and better traffic flow has been developed. The proposed solution was validated by an IEEE-802.11p-based communications study. The entire system showed good performance in testing in real-world scenarios, first by computer simulation and then with real vehicles.

184 citations

Proceedings ArticleDOI
22 Oct 2008
TL;DR: Two path planning algorithms based on Bezier curves for autonomous vehicles with way points and corridor constraints are presented and extensions of these algorithms towards navigating through an unstructured environment with limited sensor range are discussed.
Abstract: In this paper we present two path planning algorithms based on Bezier curves for autonomous vehicles with way points and corridor constraints. Bezier curves have useful properties for the path generation problem. The paper describes how the algorithms apply these properties to generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segments smoothly to generate the path. Additionally, we discuss the constrained optimization problem that optimizes the resulting path for a user-defined cost function. The simulation shows the generation of successful routes for autonomous vehicles using these algorithms as well as control results for a simple kinematic vehicle. Extensions of these algorithms towards navigating through an unstructured environment with limited sensor range are discussed.

183 citations

Journal ArticleDOI
TL;DR: The proposed approach is a hierarchical-structured algorithm that fuses traffic environment data with car dynamics in order to accurately predict the trajectory of the ego-vehicle, allowing the active safety system to inform, warn the driver, or intervene when critical situations occur.
Abstract: Path prediction is the only way that an active safety system can predict a driver's intention. In this paper, a model-based description of the traffic environment is presented - both vehicles and infrastructure - in order to provide, in real time, sufficient information for an accurate prediction of the ego-vehicle's path. The proposed approach is a hierarchical-structured algorithm that fuses traffic environment data with car dynamics in order to accurately predict the trajectory of the ego-vehicle, allowing the active safety system to inform, warn the driver, or intervene when critical situations occur. The algorithms are tested with real data, under normal conditions, for collision warning (CW) and vision-enhancement applications. The results clearly show that this approach allows a dynamic situation and threat assessment and can enhance the capabilities of adaptive cruise control and CW functions by reducing the false alarm rate.

182 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
89% related
Control system
129K papers, 1.5M citations
87% related
Optimal control
68K papers, 1.2M citations
84% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Linear system
59.5K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023167
2022478
2021620
2020811
2019749
2018749