scispace - formally typeset
Search or ask a question
Topic

Vehicle dynamics

About: Vehicle dynamics is a research topic. Over the lifetime, 12909 publications have been published within this topic receiving 204091 citations.


Papers
More filters
Journal ArticleDOI
28 May 2012
TL;DR: This paper attempts to collate and critically appraise the modern techniques used for condition monitoring of railway vehicle dynamics by analysing the advantages and shortcomings of these methods.
Abstract: A modern railway system relies on sophisticated monitoring systems for maintenance and renewal activities. Some of the existing conditions monitoring techniques perform fault detection using advanced filtering, system identification and signal analysis methods. These theoretical approaches do not require complex mathematical models of the system and can overcome potential difficulties associated with nonlinearities and parameter variations in the system. Practical applications of condition monitoring tools use sensors which are mounted either on the track or rolling stock. For instance, monitoring wheelset dynamics could be done through the use of track-mounted sensors, while vehicle-based sensors are preferred for monitoring the train infrastructure. This paper attempts to collate and critically appraise the modern techniques used for condition monitoring of railway vehicle dynamics by analysing the advantages and shortcomings of these methods.

102 citations

Journal ArticleDOI
TL;DR: Only for you today!
Abstract: Only for you today! Discover your favourite impulsive control in continuous and discrete continuous systems book right here by downloading and getting the soft file of the book. This is not your time to traditionally go to the book stores to buy a book. Here, varieties of book collections are available to download. One of them is this impulsive control in continuous and discrete continuous systems as your preferred book. Getting this book b online in this site can be realized now by visiting the link page to download. It will be easy. Why should be here?

102 citations

Journal ArticleDOI
TL;DR: In this paper, a model for the vehicle yaw-plane dynamics is presented, and a desired vehicle response is derived using both time-domain and frequency-domain approaches, using both yaw rate feedback design and full-state feedback design.
Abstract: Vehicle stability enhancement system, by controlling vehicle dynamics, is the latest active safety technology introduced since Antilock Brake System (ABS) and Traction Control System (TCS). This system provides the driver with enhanced vehicle stability and handling. It is the intent of this paper to provide an understanding of the fundamentals of control of vehicle stability. The paper describes a complete stability control algorithm. Starting with a model for the vehicle yaw-plane dynamics, we derive a desired vehicle response, using both time-domain and frequency-domain approaches. Control structures include both yaw rate feedback design, and full-state feedback design. The latter approach requires the estimation of vehicle side-slip velocity. Estimations based on integration of lateral acceleration, the use of algebraic equation using vehicle kinematics, and the use of a Luenberger observer are presented. Computation of the required wheel differential velocity to achieve control objectives is described. Finally, computer simulation is used to investigate and confirm the concepts being discussed.

101 citations

Journal ArticleDOI
TL;DR: The proposed multi-sensor fusion-based longitudinal vehicle speed estimator for four-wheel-independently-actuated electric vehicles using a Global Positioning System and Beidou Navigation Positioning module, and a low-cost Inertial Measurement Unit (IMU).
Abstract: In this paper, an enabling multi-sensor fusion-based longitudinal vehicle speed estimator is proposed for four-wheel-independently-actuated electric vehicles using a Global Positioning System and Beidou Navigation Positioning (GPS-BD) module, and a low-cost Inertial Measurement Unit (IMU). For accurate vehicle speed estimation, an approach combing the wheel speed and the GPS-BD information is firstly put forward to compensate for the impact of road gradient on the output horizontal velocity of the GPS-BD module, and the longitudinal acceleration of the IMU. Then, a multi-sensor fusion-based longitudinal vehicle speed estimator is synthesized by employing three virtual sensors which generate three longitudinal vehicle speed tracks based on multiple sensor signals. Finally, the accuracy and reliability of the proposed longitudinal vehicle speed estimator are examined under a diverse range of driving conditions through hardware-in-the-loop tests. The results show that the proposed method has high estimation accuracy, robustness, and real-time performance.

101 citations

Journal ArticleDOI
TL;DR: A novel approach to fault-tolerant control design is proposed for a full-scale vehicle dynamic model with an active suspension system in the presence of uncertainties and actuator faults for mitigating three degrees of freedom heave-roll-pitch motion arising from road undulations.
Abstract: Advanced fault-tolerant control schemes are required for ensuring efficient and reliable operation of complex technological systems such as ground vehicles. A novel approach to fault-tolerant control design is proposed for a full-scale vehicle dynamic model with an active suspension system in the presence of uncertainties and actuator faults. The proposed control scheme uses a sliding-mode controller to generate the tracking signal to the valve for each of the four wheel subsystems for mitigating three degrees of freedom (3-DOF) heave-roll-pitch motion arising from road undulations. For each of the electrohydraulic valve-cylinder pair in each subsystem, an adaptive proportional-integralderivative (PID) controller is proposed. Designing an adaptation scheme for the PID gains to accommodate actuator faults is among the main contributions of this work. The focus on actuator faults is motivated by the fact that loss of actuator effectiveness is a critical fault scenario in vehicle suspension systems and that the probability of occurrence of faults in actuators is higher and more severe when compared with other components. To analyze the performance of the proposed approach, computer simulations are carried out to illustrate control performance, robustness, and fault tolerance. The performance of our approach is then compared with that of the sliding-mode control (SMC) approach presented by Chamseddine and Noura. Results clearly indicate the strength of the adaptation scheme and its ability to mitigate fault effects in a short time. Simplicity of the overall scheme and the stabilization of the system under both faulty and fault-free conditions are the main positive features of the proposed approach.

101 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
89% related
Control system
129K papers, 1.5M citations
87% related
Optimal control
68K papers, 1.2M citations
84% related
Robustness (computer science)
94.7K papers, 1.6M citations
84% related
Linear system
59.5K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023167
2022478
2021620
2020811
2019749
2018749