scispace - formally typeset
Search or ask a question
Topic

Velocity gradient

About: Velocity gradient is a research topic. Over the lifetime, 3013 publications have been published within this topic receiving 77120 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the additive-introduced viscoelastic stress is used to dampen the turbulent vortical structures, decrease the turbulent shear stress, and then decrease the frictional drag.

114 citations

Journal ArticleDOI
A. J. Reynolds1
TL;DR: In this article, the stability of the erodible bed of a stream with a free surface is studied within the framework of classical hydraulics, in which the velocity variation with depth is reduced to a single mean velocity and the bed friction is related in a general way to the local depth and mean velocity.
Abstract: In the first part of this work the stability of the erodible bed of a stream with a free surface is studied within the framework of classical hydraulics, in which the velocity variation with depth is reduced to a single mean velocity and the bed friction is related in a general way to the local depth and mean velocity. Only two-dimensional motions can be studied in this way. In considering bed friction and a difference in phase between deposition and the mean velocity gradient along the channel, this work combines aspects of earlier studies of Exner and Kennedy.In the absence of a phase difference between erosion and mean velocity, the analysis proceeds without linearization. When the development from an equili- brium flow down a uniform slope is considered, the bed waves formed under subcritical flows are found to move downstream, while those under super-critical flows upstream; in both regimes bed waves are damped. In each case the side of a wave facing in the direction of motion is the steeper.When a phase shift is introduced as well, the analysis is carried forward only after linearization. The primary effect of bed slope and friction is a shift in the ranges of phase angle for which growth can take place and a corresponding alteration in the wavelengths for maximum growth. Friction also reduces bed-wave celerity. Consideration is given to the physical processes represented by the artifice of a phase difference between erosion and mean velocity gradient.The second section of this investigation concerns two-dimensional potential flow over a wavy stream bed. This problem is considered from a point of view different from that adopted previously by Kennedy; a modified criterion is proposed for the maximum Froude number at which bed waves will form. It is in better agreement with measured data.In the third part of this paper, the potential analysis is extended to include class of three-dimensional motions. The conditions are found for the formation of dunes (bed waves 180° out of phase with the surface waves above) and anti-dunes (the two in phase). The criterion separating dunes and antidunes for two dimensions is found to give a lower limit on the Froude number for antidunes of the more general three-dimensional class. In the antidune regime the streamwise perturbation to the velocity can change sign between surface and stream bed; the limit for this is determined.The erosion equation relating changes in bed level to local stream speed is generalized to include sediment convection in two dimensions. With this equation, three distinct regimes of bed-wave motion are found: at low Froude numbers, dunes moving downstream; at higher Froude numbers, antidunes moving upstream; and, finally, antidunes moving downstream. The criterion separating the last two r6gimes is just that mentioned above as the limit of flows whose velocity perturbation has the same sign from surface to stream bed. It is argued that this fundamental change in the flow marks also the end of the region of growth of small bed waves. It is found that three-dimensional dunes and upstream-moving antidunes can exist beyond the two-dimensional limit, but that the latter applies for all bed waves such that the ratio of stream depth to wavelength (d/λ) is small. This explains why the modified criterion for two dimensions provides for small d/λ an envelope for data obtained from observations of a wide variety of bed forms, but fails to do so for larger d/λ. The celerity of bed waves beneath three-dimensional flows is discussed. It is suggested that a class of waves occurring in natural streams will move more slowly than would two-dimensional waves in similar conditions.The work concludes with a comparison of several methods of modelling erosive flows.

113 citations

Journal ArticleDOI
TL;DR: In this article, a time-dependent, axisymmetric, third-order-accurate computational-fluid-dynamics-based model was studied using a jet diffusion flame, and the outer-vortex structures were developed as part of the solution, while a weak shear-layer perturbation was required to generate the inner structures.

112 citations

Journal ArticleDOI
TL;DR: In this paper, a modified Fourier's law of heat conduction for power-law fluids is adopted by assuming that the thermal conductivity is powerlaw-dependent on the velocity gradient.

112 citations

Journal ArticleDOI
TL;DR: In this paper, a Monte Carlo method is used to synthesize the coda envelope of a local and regional earthquake, which has several advantages over previous methods in terms of flexibility of the numerical calculation to incorporate various factors required to construct realistic seismogram envelopes.
Abstract: The analysis of the seismogram coda envelopes of local and regional earthquakes is one of the most effective strategies for investigating the heterogeneous lithospheric structure characterized by the seismic scattering and attenuation. In order to synthesize the coda envelope we introduce a numerical scheme called the direct simulation Monte Carlo method, which has been used in the field of the kinetic theory of gases. Because of the simplicity of the algorithm the method has several advantages over previous methods in terms of the flexibility of the numerical calculation to incorporate various factors required to construct realistic seismogram envelopes. On the basis of coda envelope simulations, including multiple scattering, we show that an increase of seismic velocity with depth severely affects the shape of the coda envelope. The effects of ray bending due to the velocity increase at the Moho and the reflection at the free surface are clearly found in the synthesized envelope for a shallow earthquake. Our simulation demonstrates that the amplitude of the envelope is magnified by stagnation of seismic energy at shallow depths due to the positive velocity gradient with depth. Because of this effect, for an a priori assumption of a homogeneous velocity model the measurement of the scattering coefficient by conventional methods may be overestimated.

111 citations


Network Information
Related Topics (5)
Turbulence
112.1K papers, 2.7M citations
86% related
Reynolds number
68.4K papers, 1.6M citations
82% related
Laminar flow
56K papers, 1.2M citations
80% related
Boundary layer
64.9K papers, 1.4M citations
80% related
Vortex
72.3K papers, 1.3M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202233
2021127
2020116
2019134
201892