scispace - formally typeset
Search or ask a question
Topic

Velocity gradient

About: Velocity gradient is a research topic. Over the lifetime, 3013 publications have been published within this topic receiving 77120 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analytical solution to the equations of magnetohydrodynamics that can be used to model the effect of a transverse magnetic field on buoyancy driven convection in a two-dimensional cavity was proposed.

353 citations

Journal ArticleDOI
TL;DR: In this paper, a phenomenological model for the deformation of a droplet immersed in a fluid subjected to a flow field with a uniform, but otherwise arbitrary, velocity gradient is presented.
Abstract: A simple phenomenological model for the deformation of a droplet immersed in a fluid subjected to a flow field with a uniform, but otherwise arbitrary, velocity gradient is presented. The model is capable of describing the transient evolution of the drop. The steady state predictions for simple shear and elongational flows are analytical. The model degenerates into Taylor theory in the limit of slow flows as well as for high viscosity ratios. It also recovers the affine deformation under the appropriate limiting conditions. The predictions are compared with some representative experimental and numerical results available in the literature.

332 citations

Journal ArticleDOI
07 Sep 2006-Nature
TL;DR: Experimental data and numerical calculations covering more than two decades of lifetimes are presented, showing that the lifetime does not in fact diverge but rather increases exponentially with the Reynolds number, implying that turbulence in pipes is only a transient event, and that the turbulent and laminar states remain dynamically connected, suggesting avenues for turbulence control.
Abstract: Generally, the motion of fluids is smooth and laminar at low speeds but becomes highly disordered and turbulent as the velocity increases. The transition from laminar to turbulent flow can involve a sequence of instabilities in which the system realizes progressively more complicated states, or it can occur suddenly. Once the transition has taken place, it is generally assumed that, under steady conditions, the turbulent state will persist indefinitely. The flow of a fluid down a straight pipe provides a ubiquitous example of a shear flow undergoing a sudden transition from laminar to turbulent motion. Extensive calculations and experimental studies have shown that, at relatively low flow rates, turbulence in pipes is transient, and is characterized by an exponential distribution of lifetimes. They also suggest that for Reynolds numbers exceeding a critical value the lifetime diverges (that is, becomes infinitely large), marking a change from transient to persistent turbulence. Here we present experimental data and numerical calculations covering more than two decades of lifetimes, showing that the lifetime does not in fact diverge but rather increases exponentially with the Reynolds number. This implies that turbulence in pipes is only a transient event (contrary to the commonly accepted view), and that the turbulent and laminar states remain dynamically connected, suggesting avenues for turbulence control.

316 citations

Journal ArticleDOI
TL;DR: McKeon et al. as discussed by the authors used a smaller Pitot probe to reduce the uncertainties due to velocity gradient corrections, and showed that the velocity profiles in fully developed turbulent pipe flow are repeated using a smaller pitot probe, which leads to significant differences from the Zagarola & Smits conclusions.
Abstract: The measurements by Zagarola & Smits (1998) of mean velocity profiles in fully developed turbulent pipe flow are repeated using a smaller Pitot probe to reduce the uncertainties due to velocity gradient corrections. A new static pressure correction (McKeon & Smits 2002) is used in analysing all data and leads to significant differences from the Zagarola & Smits conclusions. The results confirm the presence of a power-law region near the wall and, for Reynolds numbers greater than 230×10^3 (R+ >5×10^3), a logarithmic region further out, but the limits of these regions and some of the constants differ from those reported by Zagarola & Smits. In particular, the log law is found for 600

311 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the noise-producing region of a circular jet is dominated by a group of large eddies, containing nearly a quarter of the turbulent shear stress in the quasi-plane region of the shear layer.
Abstract: The flow in the noise-producing region of a circular jet is found to be dominated by a group of large eddies, containing nearly a quarter of the turbulent shear stress in the quasi-plane region of the shear layer: their contribution to the shear stress decreases as the effects of axisymmetry become noticeable at more than about two diameters downstream of the nozzle. These large eddies appear to be almost entirely responsible for the irrotational fluctuations near the nozzle, which, for this and other reasons, are larger relative to the reference dynamic pressure than in other shear flows. As a consequence of this, the convection velocity near the high- and low-velocity edges of the flow is biased towards the mean velocity in the high-intensity region. The dominance of the large eddies therefore explains the measurements of near-field pressure fluctuations by Franklin & Foxwell (1958), and of convection velocity by Davies, Barratt & Fisher (1963) and the present authors. The strength of these large eddies, compared with those in the boundary layer or wake, is remarkable.The large eddies appear to be mixing-jets similar to those found by Grant (1958) in the wake, but with their projection in the (y, z)-plane inclined at about 45° to the y (radial) axis instead of lying along the y-axis as in the wake.It is suggested that the augmentation of these large eddies by artificial means could be used to increase the mixing rate and permit the reduction of jet noise by means of acceptably short ejector shrouds.The medium-scale motion is found to be far from isotropic in scales, although the two scales associated with a given vorticity component are more nearly equal. This phenomenon is also noticeable in the wake.It is found that the departure from self-preservation, which starts when the shear layer thickness is no longer small compared with the nozzle radius, does not grossly affect the region of high turbulence intensity and maximum noise production until this region itself is no longer small compared with the radius. The maximum shear stress seven diameters downstream of the exit is still 70% of its value near the exit, and the non-dimensional mean velocity gradient is practically unchanged.

310 citations


Network Information
Related Topics (5)
Turbulence
112.1K papers, 2.7M citations
86% related
Reynolds number
68.4K papers, 1.6M citations
82% related
Laminar flow
56K papers, 1.2M citations
80% related
Boundary layer
64.9K papers, 1.4M citations
80% related
Vortex
72.3K papers, 1.3M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202233
2021127
2020116
2019134
201892